Here the Fiber behaviour change because pch = signal + ase + nli is
considered instead of just signal. This slightly changes the
propagation results as more power is considered to be injected in the
fiber span. All differences in tests are below 0.1 dB, with a few
exceptions slightly higher.
Change-Id: I5b2227ee036a26a11e13f3169e16868d70f0c457
Correctly uses the oms band and spacing for computing the nb of channel
and total power for design per band.
In order to keep the SI values as reference, introduce a new parameter
in SI to indicate wether to use this feature or not.
If "use_si_channel_count_for_design": true, then the f_min, f_max and spacing
from SI are used for all OMSes
else, the f_min, f_max, spacing defined per OMS (design_bands) is used.
This impacts tests where the artificial C-band boudaries were hardcoded, and
it also has an impact on performances when SI's defined nb of channels is larger
than the one defined per OMS. In this case the design was considering a larger
total power than the one finally propagated which resulted in reduced performance.
This feature now corrects this case (if "use_si_channel_count_for_design": false
which is the default setting). Overall autodesign are thus improved.
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I471a2c45200894ca354c90b46b662f42414b48ad
tous les test marche et les jeu de tests aussi.
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: If25b47aa10f97301fde7f17daa2a9478aed46db2
Instead of copying the CLI script in API code, use functions shared
by CLI and API
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I3f9b30b8700b68237d0e80768db015d8dec3deb5
gnpy currently uses the same parameter for tx output power and span
input power: this prevents from modelling low tx power effect.
This patch introduces a new tx-cannel-power and uses it to
propagate in ROADM.
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Id3ac75e2cb617b513bdb38b51a52e05d15af46f5
Remove the visualisation of the effective_pch in amp because actual
and target are the relevant ones. effective_pch was artificially
related to a mix of reference channel and noisy channel (mixed between
on the fly redesign but using actual ROADM equalisation which includes noise
in its actual loss).
the change does no more rely on the target power (which is rounded)
but on the designed gain, which is not rounded.
Propagations are slightly changed for openroadm simulations because of that.
(I verified)
The gain of amp was estimated on the fly with p_spni also in case of
RamanFiber preceding elements. removing p_spani requies that an estimation
of Raman gain be done during design.
This commit also adds this estimation.
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I960b85e99f85a7d168ac5349e325c4928fa5673b
if user define a delta_p that is reduced because of saturation,
then this initial setting is still kept for power sweep to be sure
that the full amplitude of sweep is used.
SI power = 0 dBm
max power amp1 = 20 dBm,
user_defined_delta_p set by user = 3
80 channels, so pch_max = 20 - 10log10(80) = 0.96 dBm
power_sweep -> power range [-3, 0] dBm
then for initial design,
pref = 0 dBm
computed_delta_p =
min(pch_max, pref + user_defined_delta_p) - pref = 0.96
but for -3 power sweep
pref = -3 dBm
computed_delta_p =
min(pch_max, pref + user_defined_delta_p) - pref =
min(0.96, -3 + 3) - (-3) = 3
so the user defined delta_p is applied as much as possible
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I8fd459c29aa9754ff9d4868af1d8be8642a31913