Here the Fiber behaviour change because pch = signal + ase + nli is
considered instead of just signal. This slightly changes the
propagation results as more power is considered to be injected in the
fiber span. All differences in tests are below 0.1 dB, with a few
exceptions slightly higher.
Change-Id: I5b2227ee036a26a11e13f3169e16868d70f0c457
Correctly uses the oms band and spacing for computing the nb of channel
and total power for design per band.
In order to keep the SI values as reference, introduce a new parameter
in SI to indicate wether to use this feature or not.
If "use_si_channel_count_for_design": true, then the f_min, f_max and spacing
from SI are used for all OMSes
else, the f_min, f_max, spacing defined per OMS (design_bands) is used.
This impacts tests where the artificial C-band boudaries were hardcoded, and
it also has an impact on performances when SI's defined nb of channels is larger
than the one defined per OMS. In this case the design was considering a larger
total power than the one finally propagated which resulted in reduced performance.
This feature now corrects this case (if "use_si_channel_count_for_design": false
which is the default setting). Overall autodesign are thus improved.
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I471a2c45200894ca354c90b46b662f42414b48ad
tous les test marche et les jeu de tests aussi.
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: If25b47aa10f97301fde7f17daa2a9478aed46db2
Compute the tilts only if raman-flag in sim_params is turned on.
Use actual input power in fiber (according to expected propagation
during design).
Creates a function that computes the expected tilt after propagation
in a span, and returns the normalized power difference at the center
frequency of each band, and the tilt experenced between lower and
upper frequency in each band.
Include the expected tilt when computing target gains of amplifiers.
Current function requires that the bands remain in the same order.
(ordering is ensured when creating the objects).
Change-Id: I28bdf13f2010153175e8b6d199fd8eea15d7b292
Instead of copying the CLI script in API code, use functions shared
by CLI and API
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I3f9b30b8700b68237d0e80768db015d8dec3deb5
gnpy currently uses the same parameter for tx output power and span
input power: this prevents from modelling low tx power effect.
This patch introduces a new tx-cannel-power and uses it to
propagate in ROADM.
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Id3ac75e2cb617b513bdb38b51a52e05d15af46f5
This commit introduces the 'type_variety' attribute for ROADM elements,
allowing the use of different types of ROADM specifications instead of
being limited to the default one.
If no type variety name is provided in the eqpt_config, the 'default'
name is used for backward compatibility with libraries. Additionally,
if no type variety is defined in the ROADM element in the topology,
the default one is used for backward compatibility with topologies.
The 'type_variety' attribute is included in the 'to_json' and
'display' methods for ROADM elements.
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I61a2491f994e47ad0b08cf8eaef30d6d855aa706
Remove the visualisation of the effective_pch in amp because actual
and target are the relevant ones. effective_pch was artificially
related to a mix of reference channel and noisy channel (mixed between
on the fly redesign but using actual ROADM equalisation which includes noise
in its actual loss).
the change does no more rely on the target power (which is rounded)
but on the designed gain, which is not rounded.
Propagations are slightly changed for openroadm simulations because of that.
(I verified)
The gain of amp was estimated on the fly with p_spni also in case of
RamanFiber preceding elements. removing p_spani requies that an estimation
of Raman gain be done during design.
This commit also adds this estimation.
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I960b85e99f85a7d168ac5349e325c4928fa5673b
The nonlinear coefficient can be expressed at the reference frequency and will be scaled in frequency using the scaling rule of the effective area
Change-Id: Id103b227472702776bda17ab0a2a120ecfbf7473
Fiber latency evaluated during propagation. The speed of ligth in fiber is evaluated as the vacuum speed of ligth divided by the core reflective index n1.
The latency in the transceiver is evaluated in ms.
Change-Id: I7a3638c49f346aecaf1d4897cecf96d345fdb26c
The option is only set for gnpy-transmission-main.
The spectrum file is a list of spectrum objects, each defining
f_min, f_max and spectrum attributes using the same meaning as SI
in eqpt_config.json for baud_rate, roll_off, tx_osnr. slot_width is
used for the occupation of each carrier around their central frequency,
so slot_width corresponds to spacing of SI.
Unlike SI, the frequencies are defined includint f_min and f_max.
The partitions must be contiguous not overlapping.
Pref.p_span0 object records the req_power, while
ref_carrier records info that will be useful for equalization ie baud_rate.
For now, I have not integrated the possibility to directly use
transceivers type and mode in the list.
User can define sets of contiguous channels and a label to identify
the spectrum bands. If no label are defined, the program justs uses
the index + baud rate of the spectrum bands as label.
Print results per spectrum label
If propagated spectrum has mixed rates, then prints results (GSNR and OSNR)
for each propagated spectrum type according to its label.
Print per label channel power of elements
Per channel power prints were previously only showing the noiseless
reference channel power and only an average power.
With this change, we add a new information on the print:
the average total power (signal + noise + non-linear noise).
If there are several spectrum types propagating, the average per
spectrum is displayed using the label.
For this purpose, label and total power are recorded in each element
upon propagation
Note that the difference between this total power and the existing
channel power represents the added noise for the considered OMS.
Indeed ROADMs equalize per channel total power, so that power displayed
in 'actual pch (dBm)' may contain some noise contribution accumulated
with previous propagation.
Because 'reference pch out (dBm)' is for the noiseless reference,
it is exactly set to the target power and 'actual pch (dBm)' is always
matching 'reference pch out (dBm)' in ROADM prints.
Add examples and tests for -spectrum option
initial_spectrum1.json reproduces exactly the case of SI
initial_spectrum2.json sets half of the spectrum with 50GHz 32Gbauds and
half with 75GHz 64 Gbauds. Power setting is not set for the second half,
So that equalization will depend on ROADM settings.
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ibc01e59e461e5e933e95d23dacbc5289e275ccf7
Existing tests only cover short distances, and effect on accumulated
noise, especially when crossing ROADMs with equalization, are not well
reported on elements power prints.
With this long path, I can catch more printing inconsistencies.
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I2d0e8ccbbd387a2cd6c645c07f4b5f75e4617c30