From the perspective of any application, Firezone is a layer-3 network
and will thus use the host's networking stack to form IP packets for
whichever application protocol is in use (UDP, TCP, etc). These packets
then get encapsulated into UDP packets by Firezone and sent to a
Gateway.
As a result of this design, the IP header seen by the networking stacks
of the Client and the receiving service are not visible to any
intermediary along the network path of the Client and Gateway.
In case this network path is congested and middleboxes such as routers
need to drop packets, they will look at the ECN bits in the IP header
(of the UDP packet generated by a Client or Gateway) and flip a bit in
case the previous value indicated support for ECN (`0x01` or `0x10`).
When received by a network stack that supports ECN, seeing `0x11` means
that the network path is congested and that it must reduce its
send/receive windows (or otherwise throttle the connection).
At present, this doesn't work with Firezone because of the
aforementioned encapsulation of IP packets. To support ECN, we need to
therefore:
- Copy ECN bits from a received IP packet to the datagram that
encapsulates it: This ensures that if the Client's network stack support
ECN, we mirror that support on the wire.
- Copy ECN bits from a received datagram to the IP packet the is sent to
the TUN device: This ensures that if the "Congestion Experienced" bit
get set along the network path between Client and Gateway, we reflect
that accordingly on the IP packet emitted by the TUN device.
Resolves: #3758
---------
Signed-off-by: Thomas Eizinger <thomas@eizinger.io>
Co-authored-by: Jamil Bou Kheir <jamilbk@users.noreply.github.com>
In #8159, we introduced a regression that could lead to a deadlock when
shutting down the TUN device. Whilst we did close the channel prior to
awaiting the thread to exit, we failed to notice that _another_ instance
of the sender could be alive as part of an internally stored "sending
permit" with the `PollSender` in case another packet is queued for
sending. We need to explicitly call `abort_send` to free that.
Judging from the comment and a prior bug, this shutdown logic has been
buggy before. To further avoid this deadlock, we introduce two changes:
- The worker threads only receive a `Weak` reference to the
`wintun::Session`
- We move all device-related state into a dedicated `TunState` struct
that we can drop prior to joining the threads
The combination of these features means that all strong references to
channels and the session are definitely dropped without having to wait
for anything. To provide a clean and synchronous shutdown, we wait for
at most 5s on the worker-threads. If they don't exit until then, we log
a warning and exit anyway.
This should greatly reduce the risk of future bugs here because the
session (and thus the WinTUN device) gets shutdown in any case and so at
worst, we have a few zombie threads around.
Resolves: #8265
Using the clippy lint `unwrap_used`, we can automatically lint against
all uses of `.unwrap()` on `Result` and `Option`. This turns up quite a
few results actually. In most cases, they are invariants that can't
actually be hit. For these, we change them to `Option`. In other cases,
they can actually be hit. For example, if the user supplies an invalid
log-filter.
Activating this lint ensures the compiler will yell at us every time we
use `.unwrap` to double-check whether we do indeed want to panic here.
Resolves: #7292.
On Windows, the network notifier always notifies once at startup. We
make the DNS notifier and Linux match this behavior, and we assert it in
the unit test.
Part of a yak shave towards removing Tauri.