Files
firezone/rust
Thomas Eizinger 19c5bc530a feat(gateway): deprecate the NAT64 module (#8383)
At present, the Gateway implements a NAT64 conversion that can convert
IPv4 packets to IPv6 and vice versa. Doing this efficiently creates a
fair amount of complexity within our `ip-packet` crate. In addition,
routing ICMP errors back through our NAT is also complicated by this
because we may have to translate the packet embedded in the ICMP error
as well.

The NAT64 module was originally conceived as a result of the new stub
resolver-based DNS architecture. When the Client resolves IPs for a
domain, it doesn't know whether the domain will actually resolve to IPv4
AND IPv6 addresses so it simply assigns 4 of each to every domain. Thus,
when receiving an IPv6 packet for such a DNS resource, the Gateway may
only have IPv4 addresses available and can therefore not route the
packet (unless it translates it).

This problem is not novel. In fact, an IP being unroutable or a
particular route disappearing happens all the time on the Internet. ICMP
was conceived to handle this problem and it is doing a pretty good job
at it. We can make use of that and simply return an ICMP unreachable
error back to the client whenever it picks an IP that we cannot map to
one that we resolved.

In this PR, we leave all of the NAT64 code intact and only add a
feature-flag that - when active - sends aforementioned ICMP error. While
offline (and thus also for our tests), the feature-flag evaluates to
false. It is however set to `true` in the backend, meaning on staging
and later in production, we will send these ICMP errors.

Once this is rolled out and indeed proving to be working as intended, we
can simplify our codebase and rip out the NAT64 module. At that point,
we will also have to adapt the test-suite.
2025-03-27 01:01:37 +00:00
..
2023-05-10 07:58:32 -07:00

Rust development guide

Firezone uses Rust for all data plane components. This directory contains the Linux and Windows clients, and low-level networking implementations related to STUN/TURN.

We target the last stable release of Rust using rust-toolchain.toml. If you are using rustup, that is automatically handled for you. Otherwise, ensure you have the latest stable version of Rust installed.

Reading Client logs

The Client logs are written as JSONL for machine-readability.

To make them more human-friendly, pipe them through jq like this:

cd path/to/logs  # e.g. `$HOME/.cache/dev.firezone.client/data/logs` on Linux
cat *.log | jq -r '"\(.time) \(.severity) \(.message)"'

Resulting in, e.g.

2024-04-01T18:25:47.237661392Z INFO started log
2024-04-01T18:25:47.238193266Z INFO GIT_VERSION = 1.0.0-pre.11-35-gcc0d43531
2024-04-01T18:25:48.295243016Z INFO No token / actor_name on disk, starting in signed-out state
2024-04-01T18:25:48.295360641Z INFO null

Benchmarking on Linux

The recommended way for benchmarking any of the Rust components is Linux' perf utility. For example, to attach to a running application, do:

  1. Ensure the binary you are profiling is compiled with the release profile.
  2. sudo perf record -g --freq 10000 --pid $(pgrep <your-binary>).
  3. Run the speed test or whatever load-inducing task you want to measure.
  4. sudo perf script > profile.perf
  5. Open profiler.firefox.com and load profile.perf

Instead of attaching to a process with --pid, you can also specify the path to executable directly. That is useful if you want to capture perf data for a test or a micro-benchmark.