Files
firezone/rust
Thomas Eizinger 33c707dbf6 feat(windows): introduce dedicated "TUN send" thread (#8159)
Same as done for unix-based operation systems in #8117, we introduce a
dedicated "TUN send" thread for Windows in this PR. Not only does this
move the syscalls and copying of sending packets away from `connlib`'s
main thread but it also establishes backpressure between those threads
properly.

WinTUN does not have any ability to signal that it has space in its send
buffer. If it fails to allocate a packet for sending, it will return
`ERROR_BUFFER_OVERFLOW` [0]. We now handle this case gracefully by
suspending the send thread for 10ms and then try again. This isn't a
great way of establishing back-pressure but at least we don't have any
packet loss.

To test this, I temporarily lowered the ring buffer size and ran a speed
test. In that, I could confirm that `ERROR_BUFFER_OVERFLOW` is indeed
emitted and handled as intended.

[0]: https://git.zx2c4.com/wintun/tree/api/session.c#n267
2025-02-17 20:33:45 +00:00
..
2023-05-10 07:58:32 -07:00

Rust development guide

Firezone uses Rust for all data plane components. This directory contains the Linux and Windows clients, and low-level networking implementations related to STUN/TURN.

We target the last stable release of Rust using rust-toolchain.toml. If you are using rustup, that is automatically handled for you. Otherwise, ensure you have the latest stable version of Rust installed.

Reading Client logs

The Client logs are written as JSONL for machine-readability.

To make them more human-friendly, pipe them through jq like this:

cd path/to/logs  # e.g. `$HOME/.cache/dev.firezone.client/data/logs` on Linux
cat *.log | jq -r '"\(.time) \(.severity) \(.message)"'

Resulting in, e.g.

2024-04-01T18:25:47.237661392Z INFO started log
2024-04-01T18:25:47.238193266Z INFO GIT_VERSION = 1.0.0-pre.11-35-gcc0d43531
2024-04-01T18:25:48.295243016Z INFO No token / actor_name on disk, starting in signed-out state
2024-04-01T18:25:48.295360641Z INFO null

Benchmarking on Linux

The recommended way for benchmarking any of the Rust components is Linux' perf utility. For example, to attach to a running application, do:

  1. Ensure the binary you are profiling is compiled with the release profile.
  2. sudo perf record -g --freq 10000 --pid $(pgrep <your-binary>).
  3. Run the speed test or whatever load-inducing task you want to measure.
  4. sudo perf script > profile.perf
  5. Open profiler.firefox.com and load profile.perf

Instead of attaching to a process with --pid, you can also specify the path to executable directly. That is useful if you want to capture perf data for a test or a micro-benchmark.