Files
firezone/rust/relay
Thomas Eizinger 9caca475dc test(connlib): introduce routing table to tunnel_test (#5786)
Currently, `tunnel_test` uses a rather naive approach when dispatching
`Transmit`s. In particular, it checks client, gateway and relay
separately whether they "want" a certain packet. In a real network,
these packets are routed based on their IP.

To mimic something similar, we introduce a `Host` abstraction that wraps
each component: client, gateway and relay. Additionally, we introduce a
`RoutingTable` where we can add and remove hosts. With these things in
place, routing a `Transmit` is as easy as looking up the destination IP
in the routing table and dispatching to the corresponding host.

Our hosts are type-safe: client, gateway and relay have different types.
Thus, we abstract over them using a `HostId` in order to know, which
host a certain message is for. Following these patches, we can easily
introduce multiple gateways and relays to this test by simply making
more entries in this routing table. This will increase the test coverage
of connlib.

Lastly, this patch massively increases the performance of `tunnel_test`.
It turns out that previously, we spent a lot of CPU cycles accessing
"random" IPs from very large iterators. With this patch, we take a
limited range of 100 IPs that we sample from, thus drastically
increasing performance of this test. The configured 1000 testcases
execute in 3s on my machine now (with opt-level 1 which is what we use
in CI).

---------

Signed-off-by: Thomas Eizinger <thomas@eizinger.io>
2024-07-09 01:48:54 +00:00
..

relay

This crate houses a minimalistic STUN & TURN server.

Features

We aim to support the following feature set:

  • STUN binding requests
  • TURN allocate requests
  • TURN refresh requests
  • TURN channel bind requests
  • TURN channel data requests

Relaying of data through other means such as DATA frames is not supported.

Building

You can build the relay using: cargo build --release --bin firezone-relay

You should then find a binary in target/release/firezone-relay.

Running

The Firezone Relay supports Linux only. To run the Relay binary on your Linux host:

  1. Generate a new Relay token from the "Relays" section of the admin portal and save it in your secrets manager.
  2. Ensure the FIREZONE_TOKEN=<relay_token> environment variable is set securely in your Relay's shell environment. The Relay expects this variable at startup.
  3. Now, you can start the Firezone Relay with:
firezone-relay

To view more advanced configuration options pass the --help flag:

firezone-relay --help

Ports

By default, the relay listens on port udp/3478. This is the standard port for STUN/TURN. Additionally, the relay needs to have access to the port range 49152 - 65535 for the allocations.

Portal Connection

When given a token, the relay will connect to the Firezone portal and wait for an init message before commencing relay operations.

Design

The relay is designed in a sans-IO fashion, meaning the core components do not cause side effects but operate as pure, synchronous state machines. They take in data and emit commands: wake me at this point in time, send these bytes to this peer, etc.

This allows us to very easily unit-test all kinds of scenarios because all inputs are simple values.

The main server runs in a single task and spawns one additional task for each allocation. Incoming data that needs to be relayed is forwarded to the main task where it gets authenticated and relayed on success.