Effectively, this PR consists of a few changes:
1. The easy part:
In case of permanent logical slots are defined in the global configuration, Patroni on the primary will not only create them, but also periodically update DCS with the current values of `confirmed_flush_lsn` for all these slots.
In order to reduce the number of interactions with DCS the new `/status` key was introduced. It will contain the json object with `optime` and `slots` keys. For backward compatibility the `/optime/leader` will be updated if there are members with old Patroni in the cluster.
2. The tricky part:
On replicas that are eligible for a failover, Patroni creates the logical replication slot by copying the slot file from the primary and restarting the replica. In order to copy the slot file Patroni opens a connection to the primary with `rewind` or `superuser` credentials and calls `pg_read_binary_file()` function.
When the logical slot already exists on the replica Patroni periodically calls `pg_replication_slot_advance()` function, which allows moving the slot forward.
3. Additional requirements:
In order to ensure that primary doesn't cleanup tuples from pg_catalog that are required for logical decoding, Patroni enables `hot_standby_feedback` on replicas with logical slots and on cascading replicas if they are used for streaming by replicas with logical slots.
4. When logical slots are copied from to the replica there is a timeframe when it could be not safe to use them after promotion. Right now there is no protection from promoting such a replica. But, Patroni will show the warning with names of the slots that might be not safe to use.
Compatibility.
The `pg_replication_slot_advance()` function is only available starting from PostgreSQL 11. For older Postgres versions Patroni will refuse to create the logical slot on the primary.
The old "permanent slots" feature, which creates logical slots right after promotion and before allowing connections, was removed.
Close: https://github.com/zalando/patroni/issues/1749
It could happen that one of etcd servers is not accessible on Patroni start.
In this case Patroni was trying to perform authentication and exiting, while it should exit only if Etcd explicitly responded with the `AuthFailed` error.
Close https://github.com/zalando/patroni/issues/1805
The only python-etcd3 client working directly via gRPC still supports only a single endpoint, which is not very nice for high-availability.
Since Patroni is already using a heavily hacked version of python-etcd with smart retries and auto-discovery out-of-the-box, I decided to enhance the existing code with limited support of v3 protocol via gRPC-gateway.
Unfortunately, watches via gRPC-gateway requires us to open and keep the second connection to the etcd.
Known limitations:
* The very minimal supported version is 3.0.4. On earlier versions transactions don't work due to bugs in grpc-gateway. Without transactions we can't do atomic operations, i.e. leader locks.
* Watches work only starting from 3.1.0
* Authentication works only starting from 3.3.0
* gRPC-gateway does not support authentication using TLS Common Name. This is because gRPC-proxy terminates TLS from its client so all the clients share a cert of the proxy: https://github.com/etcd-io/etcd/blob/master/Documentation/op-guide/authentication.md#using-tls-common-name