host,test: Remove unneeded vb1 rsa functions

Another in a continued stream of refactoring.  This change removes more
of the vb1 rsa library code and associated tests, in favor of their vb2
equivalents.  This change touches only host-side code and its tests, not
firmware.

BUG=chromium:611535
BRANCH=none
TEST=make runtests; emerge-kevin coreboot depthcharge

Change-Id: I1973bc2f03c60da62232e30bab0fa5fe791b6b34
Signed-off-by: Randall Spangler <rspangler@chromium.org>
Reviewed-on: https://chromium-review.googlesource.com/400901
This commit is contained in:
Randall Spangler
2016-10-14 15:37:25 -07:00
committed by chrome-bot
parent 13b109762a
commit 5a9f498182
18 changed files with 131 additions and 1082 deletions

View File

@@ -22,74 +22,4 @@
#define RSA4096NUMWORDS (RSA4096NUMBYTES / sizeof(uint32_t))
#define RSA8192NUMWORDS (RSA8192NUMBYTES / sizeof(uint32_t))
typedef struct RSAPublicKey {
uint32_t len; /* Length of n[] in number of uint32_t */
uint32_t n0inv; /* -1 / n[0] mod 2^32 */
uint32_t* n; /* modulus as little endian array */
uint32_t* rr; /* R^2 as little endian array */
unsigned int algorithm; /* Algorithm to use when verifying with the key */
} RSAPublicKey;
/* Verify a RSA PKCS1.5 signature [sig] of [sig_type] and length [sig_len]
* against an expected [hash] using [key]. Returns 0 on failure, 1 on success.
*/
int RSAVerify(const RSAPublicKey *key,
const uint8_t* sig,
const uint32_t sig_len,
const uint8_t sig_type,
const uint8_t* hash);
/* Perform RSA signature verification on [buf] of length [len] against expected
* signature [sig] using signature algorithm [algorithm]. The public key used
* for verification can either be in the form of a pre-process key blob
* [key_blob] or RSAPublicKey structure [key]. One of [key_blob] or [key] must
* be non-NULL, and the other NULL or the function will fail.
*
* Returns 1 on verification success, 0 on verification failure or invalid
* arguments.
*
* Note: This function is for use in the firmware and assumes all pointers point
* to areas in the memory of the right size.
*
*/
int RSAVerifyBinary_f(const uint8_t* key_blob,
const RSAPublicKey* key,
const uint8_t* buf,
uint64_t len,
const uint8_t* sig,
unsigned int algorithm);
/* Version of RSAVerifyBinary_f() where instead of the raw binary blob
* of data, its digest is passed as the argument. */
int RSAVerifyBinaryWithDigest_f(const uint8_t* key_blob,
const RSAPublicKey* key,
const uint8_t* digest,
const uint8_t* sig,
unsigned int algorithm);
/* ----Some additional utility functions for RSA.---- */
/* Returns the size of a pre-processed RSA public key in
* [out_size] with the algorithm [algorithm].
*
* Returns 1 on success, 0 on failure.
*/
uint64_t RSAProcessedKeySize(uint64_t algorithm, uint64_t* out_size);
/* Allocate a new RSAPublicKey structure and initialize its pointer fields to
* NULL */
RSAPublicKey* RSAPublicKeyNew(void);
/* Deep free the contents of [key]. */
void RSAPublicKeyFree(RSAPublicKey* key);
/* Create a RSAPublic key structure from binary blob [buf] of length
* [len].
*
* Caller owns the returned key and must free it.
*/
RSAPublicKey* RSAPublicKeyFromBuf(const uint8_t* buf, uint64_t len);
#endif /* VBOOT_REFERENCE_RSA_H_ */

View File

@@ -1,188 +0,0 @@
/* Copyright (c) 2011 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* Implementation of RSA signature verification which uses a pre-processed
* key for computation. The code extends Android's RSA verification code to
* support multiple RSA key lengths and hash digest algorithms.
*/
#include "sysincludes.h"
#include "2sysincludes.h"
#include "2common.h"
#include "cryptolib.h"
#include "vboot_api.h"
#include "utility.h"
/* a[] -= mod */
static void subM(const RSAPublicKey *key, uint32_t *a) {
int64_t A = 0;
uint32_t i;
for (i = 0; i < key->len; ++i) {
A += (uint64_t)a[i] - key->n[i];
a[i] = (uint32_t)A;
A >>= 32;
}
}
/* return a[] >= mod */
static int geM(const RSAPublicKey *key, uint32_t *a) {
uint32_t i;
for (i = key->len; i;) {
--i;
if (a[i] < key->n[i]) return 0;
if (a[i] > key->n[i]) return 1;
}
return 1; /* equal */
}
/* montgomery c[] += a * b[] / R % mod */
static void montMulAdd(const RSAPublicKey *key,
uint32_t* c,
const uint32_t a,
const uint32_t* b) {
uint64_t A = (uint64_t)a * b[0] + c[0];
uint32_t d0 = (uint32_t)A * key->n0inv;
uint64_t B = (uint64_t)d0 * key->n[0] + (uint32_t)A;
uint32_t i;
for (i = 1; i < key->len; ++i) {
A = (A >> 32) + (uint64_t)a * b[i] + c[i];
B = (B >> 32) + (uint64_t)d0 * key->n[i] + (uint32_t)A;
c[i - 1] = (uint32_t)B;
}
A = (A >> 32) + (B >> 32);
c[i - 1] = (uint32_t)A;
if (A >> 32) {
subM(key, c);
}
}
/* montgomery c[] = a[] * b[] / R % mod */
static void montMul(const RSAPublicKey *key,
uint32_t* c,
uint32_t* a,
uint32_t* b) {
uint32_t i;
for (i = 0; i < key->len; ++i) {
c[i] = 0;
}
for (i = 0; i < key->len; ++i) {
montMulAdd(key, c, a[i], b);
}
}
/* In-place public exponentiation. (65537}
* Input and output big-endian byte array in inout.
*/
static void modpowF4(const RSAPublicKey *key,
uint8_t* inout) {
uint32_t* a = (uint32_t*) VbExMalloc(key->len * sizeof(uint32_t));
uint32_t* aR = (uint32_t*) VbExMalloc(key->len * sizeof(uint32_t));
uint32_t* aaR = (uint32_t*) VbExMalloc(key->len * sizeof(uint32_t));
uint32_t* aaa = aaR; /* Re-use location. */
int i;
/* Convert from big endian byte array to little endian word array. */
for (i = 0; i < (int)key->len; ++i) {
uint32_t tmp =
(inout[((key->len - 1 - i) * 4) + 0] << 24) |
(inout[((key->len - 1 - i) * 4) + 1] << 16) |
(inout[((key->len - 1 - i) * 4) + 2] << 8) |
(inout[((key->len - 1 - i) * 4) + 3] << 0);
a[i] = tmp;
}
montMul(key, aR, a, key->rr); /* aR = a * RR / R mod M */
for (i = 0; i < 16; i+=2) {
montMul(key, aaR, aR, aR); /* aaR = aR * aR / R mod M */
montMul(key, aR, aaR, aaR); /* aR = aaR * aaR / R mod M */
}
montMul(key, aaa, aR, a); /* aaa = aR * a / R mod M */
/* Make sure aaa < mod; aaa is at most 1x mod too large. */
if (geM(key, aaa)) {
subM(key, aaa);
}
/* Convert to bigendian byte array */
for (i = (int)key->len - 1; i >= 0; --i) {
uint32_t tmp = aaa[i];
*inout++ = (uint8_t)(tmp >> 24);
*inout++ = (uint8_t)(tmp >> 16);
*inout++ = (uint8_t)(tmp >> 8);
*inout++ = (uint8_t)(tmp >> 0);
}
VbExFree(a);
VbExFree(aR);
VbExFree(aaR);
}
/* Verify a RSA PKCS1.5 signature against an expected hash.
* Returns 0 on failure, 1 on success.
*/
int RSAVerify(const RSAPublicKey *key,
const uint8_t *sig,
const uint32_t sig_len,
const uint8_t sig_type,
const uint8_t *hash) {
uint8_t* buf;
const uint8_t* padding;
int padding_len;
int success = 1;
if (!key || !sig || !hash)
return 0;
if (sig_len != (key->len * sizeof(uint32_t))) {
VBDEBUG(("Signature is of incorrect length!\n"));
return 0;
}
if (sig_type >= kNumAlgorithms) {
VBDEBUG(("Invalid signature type!\n"));
return 0;
}
if (key->len != siglen_map[sig_type] / sizeof(uint32_t)) {
VBDEBUG(("Wrong key passed in!\n"));
return 0;
}
buf = (uint8_t*) VbExMalloc(sig_len);
if (!buf)
return 0;
memcpy(buf, sig, sig_len);
modpowF4(key, buf);
/* Determine padding to use depending on the signature type. */
padding = padding_map[sig_type];
padding_len = padding_size_map[sig_type];
/* Even though there are probably no timing issues here, we use
* vb2_safe_memcmp() just to be on the safe side. */
/* Check pkcs1.5 padding bytes. */
if (vb2_safe_memcmp(buf, padding, padding_len)) {
VBDEBUG(("In RSAVerify(): Padding check failed!\n"));
success = 0;
}
/* Check hash. */
if (vb2_safe_memcmp(buf + padding_len, hash, sig_len - padding_len)) {
VBDEBUG(("In RSAVerify(): Hash check failed!\n"));
success = 0;
}
VbExFree(buf);
return success;
}

View File

@@ -1,162 +0,0 @@
/* Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*
* Implementation of RSA utility functions.
*/
#include "sysincludes.h"
#include "2sysincludes.h"
#include "2common.h"
#include "2sha.h"
#include "cryptolib.h"
#include "stateful_util.h"
#include "utility.h"
#include "vboot_api.h"
uint64_t RSAProcessedKeySize(uint64_t algorithm, uint64_t* out_size) {
int key_len; /* Key length in bytes. (int type matches siglen_map) */
if (algorithm < kNumAlgorithms) {
key_len = siglen_map[algorithm];
/* Total size needed by a RSAPublicKey buffer is =
* 2 * key_len bytes for the n and rr arrays
* + sizeof len + sizeof n0inv.
*/
*out_size = (2 * key_len + sizeof(uint32_t) + sizeof(uint32_t));
return 1;
}
return 0;
}
RSAPublicKey* RSAPublicKeyNew(void) {
RSAPublicKey* key = (RSAPublicKey*) VbExMalloc(sizeof(RSAPublicKey));
key->n = NULL;
key->rr = NULL;
key->len = 0;
key->algorithm = kNumAlgorithms;
return key;
}
void RSAPublicKeyFree(RSAPublicKey* key) {
if (key) {
if (key->n)
VbExFree(key->n);
if (key->rr)
VbExFree(key->rr);
VbExFree(key);
}
}
RSAPublicKey* RSAPublicKeyFromBuf(const uint8_t* buf, uint64_t len) {
RSAPublicKey* key = RSAPublicKeyNew();
MemcpyState st;
uint64_t key_len;
StatefulInit(&st, (void*)buf, len);
StatefulMemcpy(&st, &key->len, sizeof(key->len));
/* key length in bytes (avoiding possible 32-bit rollover) */
key_len = key->len;
key_len *= sizeof(uint32_t);
/* Sanity Check the key length. */
if (RSA1024NUMBYTES != key_len &&
RSA2048NUMBYTES != key_len &&
RSA4096NUMBYTES != key_len &&
RSA8192NUMBYTES != key_len) {
RSAPublicKeyFree(key);
return NULL;
}
key->n = (uint32_t*) VbExMalloc(key_len);
key->rr = (uint32_t*) VbExMalloc(key_len);
StatefulMemcpy(&st, &key->n0inv, sizeof(key->n0inv));
StatefulMemcpy(&st, key->n, key_len);
StatefulMemcpy(&st, key->rr, key_len);
if (st.overrun || st.remaining_len != 0) { /* Underrun or overrun. */
RSAPublicKeyFree(key);
return NULL;
}
return key;
}
int RSAVerifyBinary_f(const uint8_t* key_blob,
const RSAPublicKey* key,
const uint8_t* buf,
uint64_t len,
const uint8_t* sig,
unsigned int algorithm) {
RSAPublicKey* verification_key = NULL;
uint8_t digest[VB2_MAX_DIGEST_SIZE];
uint64_t key_size;
int sig_size;
int success = 0;
if (algorithm >= (unsigned int)kNumAlgorithms)
return 0; /* Invalid algorithm. */
if (!RSAProcessedKeySize(algorithm, &key_size))
return 0;
sig_size = siglen_map[algorithm];
if (key_blob && !key)
verification_key = RSAPublicKeyFromBuf(key_blob, key_size);
else if (!key_blob && key)
verification_key = (RSAPublicKey*) key; /* Supress const warning. */
else
return 0; /* Both can't be NULL or non-NULL. */
/* Ensure we have a valid key. */
if (!verification_key)
return 0;
if (VB2_SUCCESS == vb2_digest_buffer(buf, len, vb2_crypto_to_hash(algorithm),
digest, sizeof(digest))) {
success = RSAVerify(verification_key, sig, (uint32_t)sig_size,
(uint8_t)algorithm, digest);
}
if (!key)
RSAPublicKeyFree(verification_key); /* Only free if we allocated it. */
return success;
}
/* Version of RSAVerifyBinary_f() where instead of the raw binary blob
* of data, its digest is passed as the argument. */
int RSAVerifyBinaryWithDigest_f(const uint8_t* key_blob,
const RSAPublicKey* key,
const uint8_t* digest,
const uint8_t* sig,
unsigned int algorithm) {
RSAPublicKey* verification_key = NULL;
uint64_t key_size;
int sig_size;
int success;
if (algorithm >= (unsigned int)kNumAlgorithms)
return 0; /* Invalid algorithm. */
if (!RSAProcessedKeySize(algorithm, &key_size))
return 0;
sig_size = siglen_map[algorithm];
if (key_blob && !key)
verification_key = RSAPublicKeyFromBuf(key_blob, key_size);
else if (!key_blob && key)
verification_key = (RSAPublicKey*) key; /* Supress const warning. */
else
return 0; /* Both can't be NULL or non-NULL. */
/* Ensure we have a valid key. */
if (!verification_key)
return 0;
success = RSAVerify(verification_key, sig, (uint32_t)sig_size,
(uint8_t)algorithm, digest);
if (!key)
RSAPublicKeyFree(verification_key); /* Only free if we allocated it. */
return success;
}