USB: Fix memcpy routines

The memcpy like routines for moving to and from usb packet
RAM couldn't deal with all unaligned uses, this fixes their
behavior.  In particular, a previous caller might assume
that the packet RAM addresses were contiguous and attempt
to break up a call into two separate chunks (as the queue
insertion/removal code does).  But this can lead to invalid
pointers passed to these memcpy routines.  A much cleaner
solution is to make the packet RAM address space contiguous.
To do so the memcpy routines take packet RAM addresses
instead of AHB address space mapped addresses and
__usb_ram_start needed to change to be of type usb_uint so
that pointer arithmatic on it worked correctly on all platforms,
this also allowed the usb_sram_addr macro to be simplified.

Signed-off-by: Anton Staaf <robotboy@chromium.org>

BRANCH=None
BUG=None
TEST=make buildall -j
     Verify that USB still works on Ryu and discovery-stm32f072

Change-Id: I479461f07a3203f1e6e0cf9705f512a5a43c4646
Reviewed-on: https://chromium-review.googlesource.com/264764
Trybot-Ready: Anton Staaf <robotboy@chromium.org>
Tested-by: Anton Staaf <robotboy@chromium.org>
Reviewed-by: Anton Staaf <robotboy@chromium.org>
Commit-Queue: Anton Staaf <robotboy@chromium.org>
This commit is contained in:
Anton Staaf
2015-04-08 10:44:40 -07:00
committed by ChromeOS Commit Bot
parent 0016de8250
commit 8c0cef2607
5 changed files with 45 additions and 45 deletions

View File

@@ -17,7 +17,8 @@
static size_t rx_read(struct usb_stream_config const *config)
{
size_t count = btable_ep[config->endpoint].rx_count & 0x3ff;
uintptr_t address = btable_ep[config->endpoint].rx_addr;
size_t count = btable_ep[config->endpoint].rx_count & 0x3ff;
/*
* Only read the received USB packet if there is enough space in the
@@ -27,17 +28,18 @@ static size_t rx_read(struct usb_stream_config const *config)
return 0;
return producer_write_memcpy(&config->producer,
config->rx_ram,
(void *) address,
count,
memcpy_from_usbram);
}
static size_t tx_write(struct usb_stream_config const *config)
{
size_t count = consumer_read_memcpy(&config->consumer,
config->tx_ram,
config->tx_size,
memcpy_to_usbram);
uintptr_t address = btable_ep[config->endpoint].tx_addr;
size_t count = consumer_read_memcpy(&config->consumer,
(void *) address,
config->tx_size,
memcpy_to_usbram);
btable_ep[config->endpoint].tx_count = count;

View File

@@ -77,6 +77,8 @@ struct stm32_endpoint btable_ep[USB_EP_COUNT]
static usb_uint ep0_buf_tx[USB_MAX_PACKET_SIZE / 2] __usb_ram;
static usb_uint ep0_buf_rx[USB_MAX_PACKET_SIZE / 2] __usb_ram;
#define EP0_BUF_TX_SRAM_ADDR ((void *) usb_sram_addr(ep0_buf_tx))
static int set_addr;
/* remaining size of descriptor data to transfer */
static int desc_left;
@@ -155,7 +157,7 @@ static void ep0_rx(void)
desc_ptr = desc + USB_MAX_PACKET_SIZE;
len = USB_MAX_PACKET_SIZE;
}
memcpy_to_usbram(ep0_buf_tx, desc, len);
memcpy_to_usbram(EP0_BUF_TX_SRAM_ADDR, desc, len);
if (type == USB_DT_CONFIGURATION)
/* set the real descriptor size */
ep0_buf_tx[1] = USB_DESC_SIZE;
@@ -166,7 +168,7 @@ static void ep0_rx(void)
} else if (req == (USB_DIR_IN | (USB_REQ_GET_STATUS << 8))) {
uint16_t zero = 0;
/* Get status */
memcpy_to_usbram(ep0_buf_tx, (void *)&zero, 2);
memcpy_to_usbram(EP0_BUF_TX_SRAM_ADDR, (void *)&zero, 2);
btable_ep[0].tx_count = 2;
STM32_TOGGLE_EP(0, EP_TX_RX_MASK, EP_TX_RX_VALID,
EP_STATUS_OUT /*null OUT transaction */);
@@ -208,7 +210,7 @@ static void ep0_tx(void)
if (desc_ptr) {
/* we have an on-going descriptor transfer */
int len = MIN(desc_left, USB_MAX_PACKET_SIZE);
memcpy_to_usbram(ep0_buf_tx, desc_ptr, len);
memcpy_to_usbram(EP0_BUF_TX_SRAM_ADDR, desc_ptr, len);
btable_ep[0].tx_count = len;
desc_left -= len;
desc_ptr += len;
@@ -346,21 +348,15 @@ int usb_is_enabled(void)
void *memcpy_to_usbram(void *dest, const void *src, size_t n)
{
/*
* The d pointer needs to be volatile to prevent GCC from possibly
* breaking writes to the USB packet RAM into multiple 16-bit writes,
* which, due to the way the AHB2APB bridge works would clobber what
* we write with 32-bit extensions of the 16-bit writes.
*/
int i;
uint8_t *s = (uint8_t *) src;
usb_uint volatile *d = (usb_uint volatile *)((uintptr_t) dest & ~1);
int unaligned = (((uintptr_t) dest) & 1);
usb_uint *d = &__usb_ram_start[((uintptr_t) dest) / 2];
uint8_t *s = (uint8_t *) src;
int i;
if ((((uintptr_t) dest) & 1) && n) {
/*
* The first destination byte is not aligned, perform a read/
* modify/write.
*/
/*
* Handle unaligned leading byte via read/modify/write.
*/
if (unaligned && n) {
*d = (*d & ~0xff00) | (*s << 8);
n--;
s++;
@@ -382,13 +378,16 @@ void *memcpy_to_usbram(void *dest, const void *src, size_t n)
void *memcpy_from_usbram(void *dest, const void *src, size_t n)
{
int i;
usb_uint *s = (usb_uint *)((uintptr_t) src & ~1);
uint8_t *d = (uint8_t *) dest;
int unaligned = (((uintptr_t) src) & 1);
usb_uint const *s = &__usb_ram_start[((uintptr_t) src) / 2];
uint8_t *d = (uint8_t *) dest;
int i;
if ((((uintptr_t) src) & 1) && n) {
*d++ = *s++ >> 8;
if (unaligned && n) {
*d = *s >> 8;
n--;
s++;
d++;
}
for (i = 0; i < n / 2; i++) {

View File

@@ -88,7 +88,7 @@ static usb_uint hid_ep_buf[HID_REPORT_SIZE / 2] __usb_ram;
void set_keyboard_report(uint64_t rpt)
{
memcpy_to_usbram(hid_ep_buf, &rpt, sizeof(rpt));
memcpy_to_usbram((void *) usb_sram_addr(hid_ep_buf), &rpt, sizeof(rpt));
/* enable TX */
STM32_TOGGLE_EP(USB_EP_HID, EP_TX_MASK, EP_TX_VALID, 0);
}
@@ -124,7 +124,8 @@ static int hid_iface_request(usb_uint *ep0_buf_rx, usb_uint *ep0_buf_tx)
(USB_REQ_GET_DESCRIPTOR << 8))) &&
(ep0_buf_rx[1] == (USB_HID_DT_REPORT << 8))) {
/* Setup : HID specific : Get Report descriptor */
memcpy_to_usbram(ep0_buf_tx, report_desc,
memcpy_to_usbram((void *) usb_sram_addr(ep0_buf_tx),
report_desc,
sizeof(report_desc));
btable_ep[0].tx_count = MIN(ep0_buf_rx[3],
sizeof(report_desc));

View File

@@ -57,11 +57,6 @@ extern const struct hook_data __hooks_second_end[];
extern const struct deferred_data __deferred_funcs[];
extern const struct deferred_data __deferred_funcs_end[];
/* USB data */
extern const uint8_t __usb_desc[];
extern const uint8_t __usb_desc_end[];
extern const uint16_t __usb_ram_start[];
/* I2C fake devices for unit testing */
extern const struct test_i2c_read_dev __test_i2c_read8[];
extern const struct test_i2c_read_dev __test_i2c_read8_end[];

View File

@@ -235,13 +235,18 @@ struct usb_setup_packet {
#define USB_EP_DESC(i, num) USB_CONF_DESC(CONCAT4(iface, i, _1ep, num))
#define USB_CUSTOM_DESC(i, name) USB_CONF_DESC(CONCAT4(iface, i, _2, name))
#define USB_DESC_SIZE (__usb_desc_end - __usb_desc)
/* Helpers for managing the USB controller dedicated RAM */
/* primitive to access the words in USB RAM */
typedef CONFIG_USB_RAM_ACCESS_TYPE usb_uint;
/* USB Linker data */
extern const uint8_t __usb_desc[];
extern const uint8_t __usb_desc_end[];
extern usb_uint __usb_ram_start[];
#define USB_DESC_SIZE (__usb_desc_end - __usb_desc)
struct stm32_endpoint {
volatile usb_uint tx_addr;
volatile usb_uint tx_count;
@@ -261,22 +266,20 @@ void usb_read_setup_packet(usb_uint *buffer, struct usb_setup_packet *packet);
* Copy data to and from the USB dedicated RAM and take care of the weird
* addressing. These functions correctly handle unaligned accesses to the USB
* memory. They have the same prototype as memcpy, allowing them to be used
* in places that expect memcpy.
* in places that expect memcpy. The void pointer used to represent a location
* in the USB dedicated RAM should be the offset in that address space, not the
* AHB address space.
*
* The USB packet RAM is attached to the processor via the AHB2APB bridge. This
* bridge performs manipulations of read and write accesses as per the note in
* section 2.1 of RM0091. The upshot is that it is OK to read from the packet
* RAM using 8-bit or 16-bit accesses, but not 32-bit, and it is only really OK
* to write to the packet RAM using 16-bit accesses. Thus custom memcpy like
* routines need to be employed.
* section 2.1 of RM0091. The upshot is that custom memcpy like routines need
* to be employed.
*/
void *memcpy_to_usbram(void *dest, const void *src, size_t n);
void *memcpy_from_usbram(void *dest, const void *src, size_t n);
/* Compute the address inside dedicate SRAM for the USB controller */
#define usb_sram_addr(x) \
(((uint32_t)(x) - (uint32_t)__usb_ram_start) \
/ (sizeof(usb_uint)/sizeof(uint16_t)))
#define usb_sram_addr(x) ((x - __usb_ram_start) * sizeof(uint16_t))
/* These descriptors defined in board code */
extern const void * const usb_strings[];