mirror of
https://github.com/Telecominfraproject/OpenCellular.git
synced 2025-11-24 10:14:55 +00:00
Move old vkernel code out of vboot_firmware.
It will go away entirely once the build has moved to vboot_kernel. Review URL: http://codereview.chromium.org/2866006
This commit is contained in:
251
vkernel/load_kernel_fw.c
Normal file
251
vkernel/load_kernel_fw.c
Normal file
@@ -0,0 +1,251 @@
|
||||
/* Copyright (c) 2010 The Chromium OS Authors. All rights reserved.
|
||||
* Use of this source code is governed by a BSD-style license that can be
|
||||
* found in the LICENSE file.
|
||||
*
|
||||
* Functions for loading a kernel from disk.
|
||||
* (Firmware portion)
|
||||
*/
|
||||
|
||||
#include "load_kernel_fw.h"
|
||||
|
||||
#include "boot_device.h"
|
||||
#include "cgptlib.h"
|
||||
#include "kernel_image_fw.h"
|
||||
#include "rollback_index.h"
|
||||
#include "utility.h"
|
||||
#include "vboot_kernel.h"
|
||||
|
||||
#define GPT_ENTRIES_SIZE 16384 /* Bytes to read for GPT entries */
|
||||
|
||||
#ifdef PRINT_DEBUG_INFO
|
||||
// TODO: for testing
|
||||
#include <stdio.h>
|
||||
#include <inttypes.h> /* For PRIu64 macro */
|
||||
#include "cgptlib_internal.h"
|
||||
#endif
|
||||
|
||||
|
||||
#define KBUF_SIZE 65536 /* Bytes to read at start of kernel partition */
|
||||
|
||||
int LoadKernelOld(LoadKernelParams* params) {
|
||||
|
||||
GptData gpt;
|
||||
uint64_t part_start, part_size;
|
||||
uint64_t blba = params->bytes_per_lba;
|
||||
uint8_t* kbuf = NULL;
|
||||
uint64_t kbuf_sectors;
|
||||
int found_partition = 0;
|
||||
int good_partition = -1;
|
||||
uint16_t tpm_kernel_key_version, tpm_kernel_version;
|
||||
uint16_t lowest_kernel_key_version = 0xFFFF;
|
||||
uint16_t lowest_kernel_version = 0xFFFF;
|
||||
KernelImage *kim = NULL;
|
||||
int is_dev = ((BOOT_FLAG_DEVELOPER & params->boot_flags) &&
|
||||
!(BOOT_FLAG_RECOVERY & params->boot_flags));
|
||||
int is_normal = (!(BOOT_FLAG_DEVELOPER & params->boot_flags) &&
|
||||
!(BOOT_FLAG_RECOVERY & params->boot_flags));
|
||||
|
||||
/* Clear output params in case we fail */
|
||||
params->partition_number = 0;
|
||||
params->bootloader_address = 0;
|
||||
params->bootloader_size = 0;
|
||||
|
||||
if (is_normal) {
|
||||
/* Read current kernel key index from TPM. Assumes TPM is already
|
||||
* initialized. */
|
||||
if (0 != GetStoredVersions(KERNEL_VERSIONS,
|
||||
&tpm_kernel_key_version,
|
||||
&tpm_kernel_version))
|
||||
return LOAD_KERNEL_RECOVERY;
|
||||
}
|
||||
|
||||
do {
|
||||
/* Read GPT data */
|
||||
gpt.sector_bytes = blba;
|
||||
gpt.drive_sectors = params->ending_lba + 1;
|
||||
if (0 != AllocAndReadGptData(&gpt))
|
||||
break;
|
||||
|
||||
/* Initialize GPT library */
|
||||
if (GPT_SUCCESS != GptInit(&gpt))
|
||||
break;
|
||||
|
||||
/* Allocate kernel header and image work buffers */
|
||||
kbuf = (uint8_t*)Malloc(KBUF_SIZE);
|
||||
if (!kbuf)
|
||||
break;
|
||||
|
||||
kbuf_sectors = KBUF_SIZE / blba;
|
||||
kim = (KernelImage*)Malloc(sizeof(KernelImage));
|
||||
if (!kim)
|
||||
break;
|
||||
|
||||
/* Loop over candidate kernel partitions */
|
||||
while (GPT_SUCCESS == GptNextKernelEntry(&gpt, &part_start, &part_size)) {
|
||||
RSAPublicKey *kernel_sign_key = NULL;
|
||||
int kernel_start, kernel_sectors;
|
||||
|
||||
/* Found at least one kernel partition. */
|
||||
found_partition = 1;
|
||||
|
||||
/* Read the first part of the kernel partition */
|
||||
if (part_size < kbuf_sectors)
|
||||
continue;
|
||||
if (0 != BootDeviceReadLBA(part_start, kbuf_sectors, kbuf))
|
||||
continue;
|
||||
|
||||
/* Verify the kernel header and preamble */
|
||||
if (VERIFY_KERNEL_SUCCESS != VerifyKernelHeader(
|
||||
params->header_sign_key_blob,
|
||||
kbuf,
|
||||
KBUF_SIZE,
|
||||
(is_dev ? 1 : 0),
|
||||
kim,
|
||||
&kernel_sign_key)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
#ifdef PRINT_DEBUG_INFO
|
||||
printf("Kernel header:\n");
|
||||
printf("header version: %d\n", kim->header_version);
|
||||
printf("header len: %d\n", kim->header_len);
|
||||
printf("firmware sign alg: %d\n", kim->firmware_sign_algorithm);
|
||||
printf("kernel sign alg: %d\n", kim->kernel_sign_algorithm);
|
||||
printf("kernel key version: %d\n", kim->kernel_key_version);
|
||||
printf("kernel version: %d\n", kim->kernel_version);
|
||||
printf("kernel len: %" PRIu64 "\n", kim->kernel_len);
|
||||
printf("bootloader addr: %" PRIu64 "\n", kim->bootloader_offset);
|
||||
printf("bootloader size: %" PRIu64 "\n", kim->bootloader_size);
|
||||
printf("padded header size: %" PRIu64 "\n", kim->padded_header_size);
|
||||
#endif
|
||||
|
||||
/* Check for rollback of key version */
|
||||
if (kim->kernel_key_version < tpm_kernel_key_version) {
|
||||
RSAPublicKeyFree(kernel_sign_key);
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Check for rollback of kernel version */
|
||||
if (kim->kernel_key_version == tpm_kernel_key_version &&
|
||||
kim->kernel_version < tpm_kernel_version) {
|
||||
RSAPublicKeyFree(kernel_sign_key);
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Check for lowest key version from a valid header. */
|
||||
if (lowest_kernel_key_version > kim->kernel_key_version) {
|
||||
lowest_kernel_key_version = kim->kernel_key_version;
|
||||
lowest_kernel_version = kim->kernel_version;
|
||||
}
|
||||
else if (lowest_kernel_key_version == kim->kernel_key_version &&
|
||||
lowest_kernel_version > kim->kernel_version) {
|
||||
lowest_kernel_version = kim->kernel_version;
|
||||
}
|
||||
|
||||
/* If we already have a good kernel, no need to read another
|
||||
* one; we only needed to look at the versions to check for
|
||||
* rollback. */
|
||||
if (-1 != good_partition)
|
||||
continue;
|
||||
|
||||
/* Verify kernel padding is a multiple of sector size. */
|
||||
if (0 != kim->padded_header_size % blba) {
|
||||
RSAPublicKeyFree(kernel_sign_key);
|
||||
continue;
|
||||
}
|
||||
|
||||
kernel_start = part_start + (kim->padded_header_size / blba);
|
||||
kernel_sectors = (kim->kernel_len + blba - 1) / blba;
|
||||
|
||||
/* Read the kernel data */
|
||||
if (0 != BootDeviceReadLBA(kernel_start, kernel_sectors,
|
||||
params->kernel_buffer)) {
|
||||
RSAPublicKeyFree(kernel_sign_key);
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Verify kernel data */
|
||||
if (0 != VerifyKernelData(kernel_sign_key,
|
||||
kim->kernel_signature,
|
||||
params->kernel_buffer,
|
||||
kim->kernel_len,
|
||||
kim->kernel_sign_algorithm)) {
|
||||
RSAPublicKeyFree(kernel_sign_key);
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Done with the kernel signing key, so can free it now */
|
||||
RSAPublicKeyFree(kernel_sign_key);
|
||||
|
||||
/* If we're still here, the kernel is valid. */
|
||||
/* Save the first good partition we find; that's the one we'll boot */
|
||||
if (-1 == good_partition) {
|
||||
good_partition = gpt.current_kernel;
|
||||
params->partition_number = gpt.current_kernel;
|
||||
params->bootloader_address = kim->bootloader_offset;
|
||||
params->bootloader_size = kim->bootloader_size;
|
||||
|
||||
/* If we're in developer or recovery mode, there's no rollback
|
||||
* protection, so we can stop at the first valid kernel. */
|
||||
if (!is_normal)
|
||||
break;
|
||||
|
||||
/* Otherwise, we're in normal boot mode, so we do care about
|
||||
* the key index in the TPM. If the good partition's key
|
||||
* version is the same as the tpm, then the TPM doesn't need
|
||||
* updating; we can stop now. Otherwise, we'll check all the
|
||||
* other headers to see if they contain a newer key. */
|
||||
if (kim->kernel_key_version == tpm_kernel_key_version &&
|
||||
kim->kernel_version == tpm_kernel_version)
|
||||
break;
|
||||
}
|
||||
} /* while(GptNextKernelEntry) */
|
||||
} while(0);
|
||||
|
||||
/* Free kernel work and image buffers */
|
||||
if (kbuf)
|
||||
Free(kbuf);
|
||||
if (kim)
|
||||
Free(kim);
|
||||
|
||||
/* Write and free GPT data */
|
||||
WriteAndFreeGptData(&gpt);
|
||||
|
||||
/* Handle finding a good partition */
|
||||
if (good_partition >= 0) {
|
||||
|
||||
if (is_normal) {
|
||||
/* See if we need to update the TPM, for normal boot mode only. */
|
||||
if ((lowest_kernel_key_version > tpm_kernel_key_version) ||
|
||||
(lowest_kernel_key_version == tpm_kernel_key_version &&
|
||||
lowest_kernel_version > tpm_kernel_version)) {
|
||||
if (0 != WriteStoredVersions(KERNEL_VERSIONS,
|
||||
lowest_kernel_key_version,
|
||||
lowest_kernel_version))
|
||||
return LOAD_KERNEL_RECOVERY;
|
||||
}
|
||||
}
|
||||
|
||||
if (!(BOOT_FLAG_RECOVERY & params->boot_flags)) {
|
||||
/* We can lock the TPM now, since we've decided which kernel we
|
||||
* like. If we don't find a good kernel, we leave the TPM
|
||||
* unlocked so we can try again on the next boot device. If no
|
||||
* kernels are good, we'll reboot to recovery mode, so it's ok to
|
||||
* leave the TPM unlocked in that case too.
|
||||
*
|
||||
* If we're already in recovery mode, we need to leave PP unlocked,
|
||||
* so don't lock the kernel versions. */
|
||||
if (0 != LockKernelVersionsByLockingPP())
|
||||
return LOAD_KERNEL_RECOVERY;
|
||||
}
|
||||
|
||||
/* Success! */
|
||||
return LOAD_KERNEL_SUCCESS;
|
||||
}
|
||||
|
||||
/* Handle error cases */
|
||||
if (found_partition)
|
||||
return LOAD_KERNEL_INVALID;
|
||||
else
|
||||
return LOAD_KERNEL_NOT_FOUND;
|
||||
}
|
||||
Reference in New Issue
Block a user