mirror of
https://github.com/Telecominfraproject/OpenCellular.git
synced 2025-11-27 11:44:02 +00:00
VBoot Reference: Refactor Pass 1: Split {firmware|kernel}_image
This CL refactors verified boot firmware and kernel image functions into firmware and userland portions. Data Types and Functions that need to be a part of the final firmware implementation reside in files with "_fw" suffix - firmware_image_fw.{c|h} and kernel_image_fw.{c|h}.
Also some Makefile cleanups.
Review URL: http://codereview.chromium.org/1599001
This commit is contained in:
323
utils/firmware_image_fw.c
Normal file
323
utils/firmware_image_fw.c
Normal file
@@ -0,0 +1,323 @@
|
||||
/* Copyright (c) 2010 The Chromium OS Authors. All rights reserved.
|
||||
* Use of this source code is governed by a BSD-style license that can be
|
||||
* found in the LICENSE file.
|
||||
*
|
||||
* Functions for verifying a verified boot firmware image.
|
||||
* (Firmware Portion)
|
||||
*/
|
||||
|
||||
#include "firmware_image_fw.h"
|
||||
|
||||
#include "padding.h"
|
||||
#include "rollback_index.h"
|
||||
#include "rsa_utility.h"
|
||||
#include "sha_utility.h"
|
||||
#include "utility.h"
|
||||
|
||||
/* Macro to determine the size of a field structure in the FirmwareImage
|
||||
* structure. */
|
||||
#define FIELD_LEN(field) (sizeof(((FirmwareImage*)0)->field))
|
||||
|
||||
char* kVerifyFirmwareErrors[VERIFY_FIRMWARE_MAX] = {
|
||||
"Success.",
|
||||
"Invalid Image.",
|
||||
"Root Key Signature Failed.",
|
||||
"Invalid Verification Algorithm.",
|
||||
"Preamble Signature Failed.",
|
||||
"Firmware Signature Failed.",
|
||||
"Wrong Firmware Magic.",
|
||||
"Invalid Firmware Header Checksum.",
|
||||
"Firmware Signing Key Rollback.",
|
||||
"Firmware Version Rollback."
|
||||
};
|
||||
|
||||
int VerifyFirmwareHeader(const uint8_t* root_key_blob,
|
||||
const uint8_t* header_blob,
|
||||
int* algorithm,
|
||||
int* header_len) {
|
||||
int firmware_sign_key_len;
|
||||
int root_key_len;
|
||||
uint16_t hlen, algo;
|
||||
uint8_t* header_checksum = NULL;
|
||||
|
||||
/* Base Offset for the header_checksum field. Actual offset is
|
||||
* this + firmware_sign_key_len. */
|
||||
int base_header_checksum_offset = (FIELD_LEN(header_len) +
|
||||
FIELD_LEN(firmware_sign_algorithm) +
|
||||
FIELD_LEN(firmware_key_version));
|
||||
|
||||
|
||||
root_key_len = RSAProcessedKeySize(ROOT_SIGNATURE_ALGORITHM);
|
||||
Memcpy(&hlen, header_blob, sizeof(hlen));
|
||||
Memcpy(&algo,
|
||||
header_blob + FIELD_LEN(firmware_sign_algorithm),
|
||||
sizeof(algo));
|
||||
if (algo >= kNumAlgorithms)
|
||||
return VERIFY_FIRMWARE_INVALID_ALGORITHM;
|
||||
*algorithm = (int) algo;
|
||||
firmware_sign_key_len = RSAProcessedKeySize(*algorithm);
|
||||
|
||||
/* Verify that header len is correct. */
|
||||
if (hlen != (base_header_checksum_offset +
|
||||
firmware_sign_key_len +
|
||||
FIELD_LEN(header_checksum)))
|
||||
return VERIFY_FIRMWARE_INVALID_IMAGE;
|
||||
|
||||
*header_len = (int) hlen;
|
||||
|
||||
/* Verify if the hash of the header is correct. */
|
||||
header_checksum = DigestBuf(header_blob,
|
||||
*header_len - FIELD_LEN(header_checksum),
|
||||
SHA512_DIGEST_ALGORITHM);
|
||||
if (SafeMemcmp(header_checksum,
|
||||
header_blob + (base_header_checksum_offset +
|
||||
firmware_sign_key_len),
|
||||
FIELD_LEN(header_checksum))) {
|
||||
Free(header_checksum);
|
||||
return VERIFY_FIRMWARE_WRONG_HEADER_CHECKSUM;
|
||||
}
|
||||
Free(header_checksum);
|
||||
|
||||
/* Root key signature on the firmware signing key is always checked
|
||||
* irrespective of dev mode. */
|
||||
if (!RSAVerifyBinary_f(root_key_blob, NULL, /* Key to use */
|
||||
header_blob, /* Data to verify */
|
||||
*header_len, /* Length of data */
|
||||
header_blob + *header_len, /* Expected Signature */
|
||||
ROOT_SIGNATURE_ALGORITHM))
|
||||
return VERIFY_FIRMWARE_ROOT_SIGNATURE_FAILED;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int VerifyFirmwarePreamble(RSAPublicKey* firmware_sign_key,
|
||||
const uint8_t* preamble_blob,
|
||||
int algorithm,
|
||||
uint64_t* firmware_len) {
|
||||
uint64_t len;
|
||||
int preamble_len;
|
||||
uint16_t firmware_version;
|
||||
|
||||
Memcpy(&firmware_version, preamble_blob, sizeof(firmware_version));
|
||||
|
||||
preamble_len = (FIELD_LEN(firmware_version) +
|
||||
FIELD_LEN(firmware_len) +
|
||||
FIELD_LEN(preamble));
|
||||
if (!RSAVerifyBinary_f(NULL, firmware_sign_key, /* Key to use */
|
||||
preamble_blob, /* Data to verify */
|
||||
preamble_len, /* Length of data */
|
||||
preamble_blob + preamble_len, /* Expected Signature */
|
||||
algorithm))
|
||||
return VERIFY_FIRMWARE_PREAMBLE_SIGNATURE_FAILED;
|
||||
|
||||
Memcpy(&len, preamble_blob + FIELD_LEN(firmware_version),
|
||||
sizeof(len));
|
||||
*firmware_len = len;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int VerifyFirmwareData(RSAPublicKey* firmware_sign_key,
|
||||
const uint8_t* preamble_start,
|
||||
const uint8_t* firmware_data_start,
|
||||
uint64_t firmware_len,
|
||||
int algorithm) {
|
||||
int signature_len = siglen_map[algorithm];
|
||||
uint8_t* digest;
|
||||
DigestContext ctx;
|
||||
|
||||
/* Since the firmware signature is over the preamble and the firmware data,
|
||||
* which does not form a contiguous region of memory, we calculate the
|
||||
* message digest ourselves. */
|
||||
DigestInit(&ctx, algorithm);
|
||||
DigestUpdate(&ctx, preamble_start,
|
||||
(FIELD_LEN(firmware_version) +
|
||||
FIELD_LEN(firmware_len) +
|
||||
FIELD_LEN(preamble)));
|
||||
DigestUpdate(&ctx, firmware_data_start + signature_len, firmware_len);
|
||||
digest = DigestFinal(&ctx);
|
||||
if (!RSAVerifyBinaryWithDigest_f(
|
||||
NULL, firmware_sign_key, /* Key to use. */
|
||||
digest, /* Digest of the data to verify. */
|
||||
firmware_data_start, /* Expected Signature */
|
||||
algorithm)) {
|
||||
Free(digest);
|
||||
return VERIFY_FIRMWARE_SIGNATURE_FAILED;
|
||||
}
|
||||
Free(digest);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int VerifyFirmware(const uint8_t* root_key_blob,
|
||||
const uint8_t* firmware_blob) {
|
||||
int error_code = 0;
|
||||
int algorithm; /* Signing key algorithm. */
|
||||
RSAPublicKey* firmware_sign_key = NULL;
|
||||
int firmware_sign_key_len, signature_len, header_len;
|
||||
uint64_t firmware_len;
|
||||
const uint8_t* header_ptr = NULL; /* Pointer to header. */
|
||||
const uint8_t* firmware_sign_key_ptr = NULL; /* Pointer to signing key. */
|
||||
const uint8_t* preamble_ptr = NULL; /* Pointer to preamble block. */
|
||||
const uint8_t* firmware_ptr = NULL; /* Pointer to firmware signature/data. */
|
||||
|
||||
/* Note: All the offset calculations are based on struct FirmwareImage which
|
||||
* is defined in include/firmware_image.h. */
|
||||
|
||||
/* Compare magic bytes. */
|
||||
if (SafeMemcmp(firmware_blob, FIRMWARE_MAGIC, FIRMWARE_MAGIC_SIZE))
|
||||
return VERIFY_FIRMWARE_WRONG_MAGIC;
|
||||
header_ptr = firmware_blob + FIRMWARE_MAGIC_SIZE;
|
||||
|
||||
/* Only continue if header verification succeeds. */
|
||||
if ((error_code = VerifyFirmwareHeader(root_key_blob, header_ptr,
|
||||
&algorithm, &header_len)))
|
||||
return error_code; /* AKA jump to revovery. */
|
||||
|
||||
/* Parse signing key into RSAPublicKey structure since it is required multiple
|
||||
* times. */
|
||||
firmware_sign_key_len = RSAProcessedKeySize(algorithm);
|
||||
firmware_sign_key_ptr = header_ptr + (FIELD_LEN(header_len) +
|
||||
FIELD_LEN(firmware_sign_algorithm) +
|
||||
FIELD_LEN(firmware_key_version));
|
||||
firmware_sign_key = RSAPublicKeyFromBuf(firmware_sign_key_ptr,
|
||||
firmware_sign_key_len);
|
||||
signature_len = siglen_map[algorithm];
|
||||
|
||||
/* Only continue if preamble verification succeeds. */
|
||||
preamble_ptr = (header_ptr + header_len +
|
||||
FIELD_LEN(firmware_key_signature));
|
||||
if ((error_code = VerifyFirmwarePreamble(firmware_sign_key, preamble_ptr,
|
||||
algorithm,
|
||||
&firmware_len))) {
|
||||
RSAPublicKeyFree(firmware_sign_key);
|
||||
debug("Couldn't verify Firmware preamble.\n");
|
||||
return error_code; /* AKA jump to recovery. */
|
||||
}
|
||||
/* Only continue if firmware data verification succeeds. */
|
||||
firmware_ptr = (preamble_ptr +
|
||||
(FIELD_LEN(firmware_version) + /* Skip the preamble. */
|
||||
FIELD_LEN(firmware_len) +
|
||||
FIELD_LEN(preamble)) +
|
||||
signature_len);
|
||||
|
||||
if ((error_code = VerifyFirmwareData(firmware_sign_key, preamble_ptr,
|
||||
firmware_ptr,
|
||||
firmware_len,
|
||||
algorithm))) {
|
||||
RSAPublicKeyFree(firmware_sign_key);
|
||||
debug("Couldn't verify Firmware data.\n");
|
||||
return error_code; /* AKA jump to recovery. */
|
||||
}
|
||||
|
||||
RSAPublicKeyFree(firmware_sign_key);
|
||||
return 0; /* Success! */
|
||||
}
|
||||
|
||||
uint32_t GetLogicalFirmwareVersion(uint8_t* firmware_blob) {
|
||||
uint16_t firmware_key_version;
|
||||
uint16_t firmware_version;
|
||||
uint16_t firmware_sign_algorithm;
|
||||
int firmware_sign_key_len;
|
||||
Memcpy(&firmware_sign_algorithm,
|
||||
firmware_blob + (FIELD_LEN(magic) + /* Offset to field. */
|
||||
FIELD_LEN(header_len)),
|
||||
sizeof(firmware_sign_algorithm));
|
||||
Memcpy(&firmware_key_version,
|
||||
firmware_blob + (FIELD_LEN(magic) + /* Offset to field. */
|
||||
FIELD_LEN(header_len) +
|
||||
FIELD_LEN(firmware_sign_algorithm)),
|
||||
sizeof(firmware_key_version));
|
||||
if (firmware_sign_algorithm >= kNumAlgorithms)
|
||||
return 0;
|
||||
firmware_sign_key_len = RSAProcessedKeySize(firmware_sign_algorithm);
|
||||
Memcpy(&firmware_version,
|
||||
firmware_blob + (FIELD_LEN(magic) + /* Offset to field. */
|
||||
FIELD_LEN(header_len) +
|
||||
FIELD_LEN(firmware_key_version) +
|
||||
firmware_sign_key_len +
|
||||
FIELD_LEN(header_checksum) +
|
||||
FIELD_LEN(firmware_key_signature)),
|
||||
sizeof(firmware_version));
|
||||
return CombineUint16Pair(firmware_key_version, firmware_version);
|
||||
}
|
||||
|
||||
int VerifyFirmwareDriver_f(uint8_t* root_key_blob,
|
||||
uint8_t* firmwareA,
|
||||
uint8_t* firmwareB) {
|
||||
/* Contains the logical firmware version (32-bit) which is calculated as
|
||||
* (firmware_key_version << 16 | firmware_version) where
|
||||
* [firmware_key_version] [firmware_version] are both 16-bit.
|
||||
*/
|
||||
uint32_t firmwareA_lversion, firmwareB_lversion;
|
||||
uint8_t firmwareA_is_verified = 0; /* Whether firmwareA verify succeeded. */
|
||||
uint32_t min_lversion; /* Minimum of firmware A and firmware lversion. */
|
||||
uint32_t stored_lversion; /* Stored logical version in the TPM. */
|
||||
|
||||
/* Initialize the TPM since we'll be reading the rollback indices. */
|
||||
SetupTPM();
|
||||
|
||||
/* We get the key versions by reading directly from the image blobs without
|
||||
* any additional (expensive) sanity checking on the blob since it's faster to
|
||||
* outright reject a firmware with an older firmware key version. A malformed
|
||||
* or corrupted firmware blob will still fail when VerifyFirmware() is called
|
||||
* on it.
|
||||
*/
|
||||
firmwareA_lversion = GetLogicalFirmwareVersion(firmwareA);
|
||||
firmwareB_lversion = GetLogicalFirmwareVersion(firmwareB);
|
||||
min_lversion = Min(firmwareA_lversion, firmwareB_lversion);
|
||||
stored_lversion = CombineUint16Pair(GetStoredVersion(FIRMWARE_KEY_VERSION),
|
||||
GetStoredVersion(FIRMWARE_VERSION));
|
||||
/* Always try FirmwareA first. */
|
||||
if (VERIFY_FIRMWARE_SUCCESS == VerifyFirmware(root_key_blob, firmwareA))
|
||||
firmwareA_is_verified = 1;
|
||||
if (firmwareA_is_verified && (stored_lversion < firmwareA_lversion)) {
|
||||
/* Stored version may need to be updated but only if FirmwareB
|
||||
* is successfully verified and has a logical version greater than
|
||||
* the stored logical version. */
|
||||
if (stored_lversion < firmwareB_lversion) {
|
||||
if (VERIFY_FIRMWARE_SUCCESS == VerifyFirmware(root_key_blob, firmwareB)) {
|
||||
WriteStoredVersion(FIRMWARE_KEY_VERSION,
|
||||
(uint16_t) (min_lversion >> 16));
|
||||
WriteStoredVersion(FIRMWARE_VERSION,
|
||||
(uint16_t) (min_lversion & 0x00FFFF));
|
||||
stored_lversion = min_lversion; /* Update stored version as it's used
|
||||
* later. */
|
||||
}
|
||||
}
|
||||
}
|
||||
/* Lock Firmware TPM rollback indices from further writes. */
|
||||
/* TODO(gauravsh): Figure out if these can be combined into one
|
||||
* 32-bit location since we seem to always use them together. This can help
|
||||
* us minimize the number of NVRAM writes/locks (which are limited over flash
|
||||
* memory lifetimes.
|
||||
*/
|
||||
LockStoredVersion(FIRMWARE_KEY_VERSION);
|
||||
LockStoredVersion(FIRMWARE_VERSION);
|
||||
|
||||
/* Determine which firmware (if any) to jump to.
|
||||
*
|
||||
* We always attempt to jump to FirmwareA first. If verification of FirmwareA
|
||||
* fails, we try FirmwareB. In all cases, if the firmware successfully
|
||||
* verified but is a rollback, we jump to recovery.
|
||||
*
|
||||
* Note: This means that if FirmwareA verified successfully and is a
|
||||
* rollback, then no attempt is made to check FirmwareB. We still jump to
|
||||
* recovery. FirmwareB is only used as a backup in case FirmwareA gets
|
||||
* corrupted. Since newer firmware updates are always written to A,
|
||||
* the case where firmware A is verified but a rollback should not occur in
|
||||
* normal operation.
|
||||
*/
|
||||
if (firmwareA_is_verified) {
|
||||
if (stored_lversion <= firmwareA_lversion)
|
||||
return BOOT_FIRMWARE_A_CONTINUE;
|
||||
} else {
|
||||
/* If FirmwareA was not valid, then we skipped over the
|
||||
* check to update the rollback indices and a Verify of FirmwareB wasn't
|
||||
* attempted.
|
||||
* If FirmwareB is not a rollback, then we attempt to do the verification.
|
||||
*/
|
||||
if (stored_lversion <= firmwareB_lversion &&
|
||||
(VERIFY_FIRMWARE_SUCCESS == VerifyFirmware(root_key_blob, firmwareB)))
|
||||
return BOOT_FIRMWARE_B_CONTINUE;
|
||||
}
|
||||
/* D'oh: No bootable firmware. */
|
||||
return BOOT_FIRMWARE_RECOVERY_CONTINUE;
|
||||
}
|
||||
Reference in New Issue
Block a user