mirror of
https://github.com/Telecominfraproject/OpenCellular.git
synced 2025-11-24 02:05:01 +00:00
VBoot Reference: Refactor Pass 1: Split {firmware|kernel}_image
This CL refactors verified boot firmware and kernel image functions into firmware and userland portions. Data Types and Functions that need to be a part of the final firmware implementation reside in files with "_fw" suffix - firmware_image_fw.{c|h} and kernel_image_fw.{c|h}.
Also some Makefile cleanups.
Review URL: http://codereview.chromium.org/1599001
This commit is contained in:
@@ -8,9 +8,27 @@
|
||||
|
||||
#include "utility.h"
|
||||
|
||||
#include <stdarg.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
void error(const char *format, ...) {
|
||||
va_list ap;
|
||||
va_start(ap, format);
|
||||
fprintf(stderr, "ERROR: ");
|
||||
vfprintf(stderr, format, ap);
|
||||
va_end(ap);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
void debug(const char *format, ...) {
|
||||
va_list ap;
|
||||
va_start(ap, format);
|
||||
fprintf(stderr, "WARNING: ");
|
||||
vfprintf(stderr, format, ap);
|
||||
va_end(ap);
|
||||
}
|
||||
|
||||
void* Malloc(size_t size) {
|
||||
void* p = malloc(size);
|
||||
if (!p) {
|
||||
|
||||
@@ -2,53 +2,14 @@
|
||||
* Use of this source code is governed by a BSD-style license that can be
|
||||
* found in the LICENSE file.
|
||||
*
|
||||
* Data structure and API definitions for a verified boot firmware image.
|
||||
* API definitions for a verified boot firmware image.
|
||||
* (Userland Portion)
|
||||
*/
|
||||
|
||||
#ifndef VBOOT_REFERENCE_FIRMWARE_IMAGE_H_
|
||||
#define VBOOT_REFERENCE_FIRMWARE_IMAGE_H_
|
||||
|
||||
#include <inttypes.h>
|
||||
|
||||
#include "rsa.h"
|
||||
#include "sha.h"
|
||||
|
||||
#define FIRMWARE_MAGIC "CHROMEOS"
|
||||
#define FIRMWARE_MAGIC_SIZE 8
|
||||
#define FIRMWARE_PREAMBLE_SIZE 8
|
||||
|
||||
/* RSA 8192 and SHA-512. */
|
||||
#define ROOT_SIGNATURE_ALGORITHM 11
|
||||
#define ROOT_SIGNATURE_ALGORITHM_STRING "11"
|
||||
|
||||
typedef struct FirmwareImage {
|
||||
uint8_t magic[FIRMWARE_MAGIC_SIZE];
|
||||
/* Key Header */
|
||||
uint16_t header_len; /* Length of the header. */
|
||||
uint16_t firmware_sign_algorithm; /* Signature algorithm used by the signing
|
||||
* key. */
|
||||
uint16_t firmware_key_version; /* Key Version# for preventing rollbacks. */
|
||||
uint8_t* firmware_sign_key; /* Pre-processed public half of signing key. */
|
||||
uint8_t header_checksum[SHA512_DIGEST_SIZE]; /* SHA-512 hash of the header.*/
|
||||
|
||||
uint8_t firmware_key_signature[RSA8192NUMBYTES]; /* Signature of the header
|
||||
* above. */
|
||||
|
||||
/* Firmware Preamble. */
|
||||
uint16_t firmware_version; /* Firmware Version# for preventing rollbacks.*/
|
||||
uint64_t firmware_len; /* Length of the rest of the R/W firmware data. */
|
||||
uint8_t preamble[FIRMWARE_PREAMBLE_SIZE]; /* Remaining preamble data.*/
|
||||
|
||||
uint8_t* preamble_signature; /* Signature over the preamble. */
|
||||
|
||||
/* The firmware signature comes first as it may allow us to parallelize
|
||||
* the firmware data fetch and RSA public operation.
|
||||
*/
|
||||
uint8_t* firmware_signature; /* Signature on the Preamble +
|
||||
[firmware_data]. */
|
||||
uint8_t* firmware_data; /* Rest of firmware data */
|
||||
|
||||
} FirmwareImage;
|
||||
#include "firmware_image_fw.h"
|
||||
|
||||
/* Allocate and return a new FirmwareImage structure. */
|
||||
FirmwareImage* FirmwareImageNew(void);
|
||||
@@ -100,77 +61,11 @@ uint8_t* GetFirmwareBlob(const FirmwareImage* image, uint64_t* blob_len);
|
||||
int WriteFirmwareImage(const char* input_file,
|
||||
const FirmwareImage* image);
|
||||
|
||||
|
||||
/* Pretty print the contents of [image]. Only headers and metadata information
|
||||
* is printed.
|
||||
*/
|
||||
void PrintFirmwareImage(const FirmwareImage* image);
|
||||
|
||||
/* Error Codes for VerifyFirmware* family of functions. */
|
||||
#define VERIFY_FIRMWARE_SUCCESS 0
|
||||
#define VERIFY_FIRMWARE_INVALID_IMAGE 1
|
||||
#define VERIFY_FIRMWARE_ROOT_SIGNATURE_FAILED 2
|
||||
#define VERIFY_FIRMWARE_INVALID_ALGORITHM 3
|
||||
#define VERIFY_FIRMWARE_PREAMBLE_SIGNATURE_FAILED 4
|
||||
#define VERIFY_FIRMWARE_SIGNATURE_FAILED 5
|
||||
#define VERIFY_FIRMWARE_WRONG_MAGIC 6
|
||||
#define VERIFY_FIRMWARE_WRONG_HEADER_CHECKSUM 7
|
||||
#define VERIFY_FIRMWARE_KEY_ROLLBACK 8
|
||||
#define VERIFY_FIRMWARE_VERSION_ROLLBACK 9
|
||||
#define VERIFY_FIRMWARE_MAX 10 /* Total number of error codes. */
|
||||
|
||||
extern char* kVerifyFirmwareErrors[VERIFY_FIRMWARE_MAX];
|
||||
|
||||
/* Checks for the sanity of the firmware header pointed by [header_blob].
|
||||
*
|
||||
* On success, put signature algorithm in [algorithm], header length
|
||||
* in [header_len], and return 0.
|
||||
* Else, return error code on failure.
|
||||
*/
|
||||
int VerifyFirmwareHeader(const uint8_t* root_key_blob,
|
||||
const uint8_t* header_blob,
|
||||
int* algorithm,
|
||||
int* header_len);
|
||||
|
||||
/* Checks the preamble signature on firmware preamble pointed by
|
||||
* [preamble_blob] using the signing key [sign_key].
|
||||
*
|
||||
* On success, put firmware length into [firmware_len], and return 0.
|
||||
* Else, return error code on failure.
|
||||
*/
|
||||
int VerifyFirmwarePreamble(RSAPublicKey* sign_key,
|
||||
const uint8_t* preamble_blob,
|
||||
int algorithm,
|
||||
uint64_t* firmware_len);
|
||||
|
||||
/* Checks the signature on the preamble + firmware data at
|
||||
* [preamble_start] and [firmware_data_start].
|
||||
* The length of the actual firmware data is firmware_len and it is assumed to
|
||||
* be prepended with the signature whose size depends on the signature_algorithm
|
||||
* [algorithm]. This signature also covers the preamble data (but not the
|
||||
* preamble signature itself).
|
||||
*
|
||||
* Return 0 on success, error code on failure.
|
||||
*/
|
||||
int VerifyFirmwareData(RSAPublicKey* sign_key,
|
||||
const uint8_t* preamble_start,
|
||||
const uint8_t* firmware_data_start,
|
||||
uint64_t firmware_len,
|
||||
int algorithm);
|
||||
|
||||
/* Performs a chained verify of the firmware blob [firmware_blob].
|
||||
*
|
||||
* Returns 0 on success, error code on failure.
|
||||
*
|
||||
* NOTE: The length of the firmware blob is derived from reading the fields
|
||||
* in the first few bytes of the buffer. This might look risky but in firmware
|
||||
* land, the start address of the firmware_blob will always be fixed depending
|
||||
* on the memory map on the particular platform. In addition, the signature on
|
||||
* length itself is checked early in the verification process for extra safety.
|
||||
*/
|
||||
int VerifyFirmware(const uint8_t* root_key_blob,
|
||||
const uint8_t* firmware_blob);
|
||||
|
||||
/* Performs a chained verify of the firmware [image].
|
||||
*
|
||||
* Returns 0 on success, error code on failure.
|
||||
@@ -195,26 +90,4 @@ int AddFirmwareKeySignature(FirmwareImage* image, const char* root_key_file);
|
||||
*/
|
||||
int AddFirmwareSignature(FirmwareImage* image, const char* signing_key_file);
|
||||
|
||||
/* Returns the logical version of a firmware blob which is calculated as
|
||||
* (firmware_key_version << 16 | firmware_version). */
|
||||
uint32_t GetLogicalFirmwareVersion(uint8_t* firmware_blob);
|
||||
|
||||
#define BOOT_FIRMWARE_A_CONTINUE 1
|
||||
#define BOOT_FIRMWARE_B_CONTINUE 2
|
||||
#define BOOT_FIRMWARE_RECOVERY_CONTINUE 3
|
||||
|
||||
/* This function is the driver used by the RO firmware to
|
||||
* determine which copy of the firmware to boot from. It performs
|
||||
* the requisite rollback index checking, including updating them,
|
||||
* if required.
|
||||
*
|
||||
* Returns the code path to follow. It is one of:
|
||||
* BOOT_FIRMWARE_A_CONTINUE Boot from Firmware A
|
||||
* BOOT_FIRMWARE_B_CONTINUE Boot from Firmware B
|
||||
* BOOT_FIRMWARE_RECOVERY_CONTINUE Jump to recovery mode
|
||||
*/
|
||||
int VerifyFirmwareDriver_f(uint8_t* root_key_blob,
|
||||
uint8_t* firmwareA,
|
||||
uint8_t* firmwareB);
|
||||
|
||||
#endif /* VBOOT_REFERENCE_FIRMWARE_IMAGE_H_ */
|
||||
|
||||
142
include/firmware_image_fw.h
Normal file
142
include/firmware_image_fw.h
Normal file
@@ -0,0 +1,142 @@
|
||||
/* Copyright (c) 2010 The Chromium OS Authors. All rights reserved.
|
||||
* Use of this source code is governed by a BSD-style license that can be
|
||||
* found in the LICENSE file.
|
||||
*
|
||||
* Data structure and API definitions for a verified boot firmware image.
|
||||
* (Firmware Portion)
|
||||
*/
|
||||
|
||||
#ifndef VBOOT_REFERENCE_FIRMWARE_IMAGE_FW_H_
|
||||
#define VBOOT_REFERENCE_FIRMWARE_IMAGE_FW_H_
|
||||
|
||||
#include <stdint.h>
|
||||
#include "rsa.h"
|
||||
#include "sha.h"
|
||||
|
||||
#define FIRMWARE_MAGIC "CHROMEOS"
|
||||
#define FIRMWARE_MAGIC_SIZE 8
|
||||
#define FIRMWARE_PREAMBLE_SIZE 8
|
||||
|
||||
/* RSA 8192 and SHA-512. */
|
||||
#define ROOT_SIGNATURE_ALGORITHM 11
|
||||
#define ROOT_SIGNATURE_ALGORITHM_STRING "11"
|
||||
|
||||
typedef struct FirmwareImage {
|
||||
uint8_t magic[FIRMWARE_MAGIC_SIZE];
|
||||
/* Key Header */
|
||||
uint16_t header_len; /* Length of the header. */
|
||||
uint16_t firmware_sign_algorithm; /* Signature algorithm used by the signing
|
||||
* key. */
|
||||
uint16_t firmware_key_version; /* Key Version# for preventing rollbacks. */
|
||||
uint8_t* firmware_sign_key; /* Pre-processed public half of signing key. */
|
||||
uint8_t header_checksum[SHA512_DIGEST_SIZE]; /* SHA-512 hash of the header.*/
|
||||
|
||||
uint8_t firmware_key_signature[RSA8192NUMBYTES]; /* Signature of the header
|
||||
* above. */
|
||||
|
||||
/* Firmware Preamble. */
|
||||
uint16_t firmware_version; /* Firmware Version# for preventing rollbacks.*/
|
||||
uint64_t firmware_len; /* Length of the rest of the R/W firmware data. */
|
||||
uint8_t preamble[FIRMWARE_PREAMBLE_SIZE]; /* Remaining preamble data.*/
|
||||
|
||||
uint8_t* preamble_signature; /* Signature over the preamble. */
|
||||
|
||||
/* The firmware signature comes first as it may allow us to parallelize
|
||||
* the firmware data fetch and RSA public operation.
|
||||
*/
|
||||
uint8_t* firmware_signature; /* Signature on the Preamble +
|
||||
[firmware_data]. */
|
||||
uint8_t* firmware_data; /* Rest of firmware data */
|
||||
|
||||
} FirmwareImage;
|
||||
|
||||
|
||||
/* Error Codes for VerifyFirmware* family of functions. */
|
||||
#define VERIFY_FIRMWARE_SUCCESS 0
|
||||
#define VERIFY_FIRMWARE_INVALID_IMAGE 1
|
||||
#define VERIFY_FIRMWARE_ROOT_SIGNATURE_FAILED 2
|
||||
#define VERIFY_FIRMWARE_INVALID_ALGORITHM 3
|
||||
#define VERIFY_FIRMWARE_PREAMBLE_SIGNATURE_FAILED 4
|
||||
#define VERIFY_FIRMWARE_SIGNATURE_FAILED 5
|
||||
#define VERIFY_FIRMWARE_WRONG_MAGIC 6
|
||||
#define VERIFY_FIRMWARE_WRONG_HEADER_CHECKSUM 7
|
||||
#define VERIFY_FIRMWARE_KEY_ROLLBACK 8
|
||||
#define VERIFY_FIRMWARE_VERSION_ROLLBACK 9
|
||||
#define VERIFY_FIRMWARE_MAX 10 /* Total number of error codes. */
|
||||
|
||||
extern char* kVerifyFirmwareErrors[VERIFY_FIRMWARE_MAX];
|
||||
|
||||
/* Checks for the sanity of the firmware header pointed by [header_blob].
|
||||
*
|
||||
* On success, put signature algorithm in [algorithm], header length
|
||||
* in [header_len], and return 0.
|
||||
* Else, return error code on failure.
|
||||
*/
|
||||
int VerifyFirmwareHeader(const uint8_t* root_key_blob,
|
||||
const uint8_t* header_blob,
|
||||
int* algorithm,
|
||||
int* header_len);
|
||||
|
||||
/* Checks the preamble signature on firmware preamble pointed by
|
||||
* [preamble_blob] using the signing key [sign_key].
|
||||
*
|
||||
* On success, put firmware length into [firmware_len], and return 0.
|
||||
* Else, return error code on failure.
|
||||
*/
|
||||
int VerifyFirmwarePreamble(RSAPublicKey* sign_key,
|
||||
const uint8_t* preamble_blob,
|
||||
int algorithm,
|
||||
uint64_t* firmware_len);
|
||||
|
||||
/* Checks the signature on the preamble + firmware data at
|
||||
* [preamble_start] and [firmware_data_start].
|
||||
* The length of the actual firmware data is firmware_len and it is assumed to
|
||||
* be prepended with the signature whose size depends on the signature_algorithm
|
||||
* [algorithm]. This signature also covers the preamble data (but not the
|
||||
* preamble signature itself).
|
||||
*
|
||||
* Return 0 on success, error code on failure.
|
||||
*/
|
||||
int VerifyFirmwareData(RSAPublicKey* sign_key,
|
||||
const uint8_t* preamble_start,
|
||||
const uint8_t* firmware_data_start,
|
||||
uint64_t firmware_len,
|
||||
int algorithm);
|
||||
|
||||
/* Performs a chained verify of the firmware blob [firmware_blob].
|
||||
*
|
||||
* Returns 0 on success, error code on failure.
|
||||
*
|
||||
* NOTE: The length of the firmware blob is derived from reading the fields
|
||||
* in the first few bytes of the buffer. This might look risky but in firmware
|
||||
* land, the start address of the firmware_blob will always be fixed depending
|
||||
* on the memory map on the particular platform. In addition, the signature on
|
||||
* length itself is checked early in the verification process for extra safety.
|
||||
*/
|
||||
int VerifyFirmware(const uint8_t* root_key_blob,
|
||||
const uint8_t* firmware_blob);
|
||||
|
||||
/* Returns the logical version of a firmware blob which is calculated as
|
||||
* (firmware_key_version << 16 | firmware_version). */
|
||||
uint32_t GetLogicalFirmwareVersion(uint8_t* firmware_blob);
|
||||
|
||||
#define BOOT_FIRMWARE_A_CONTINUE 1
|
||||
#define BOOT_FIRMWARE_B_CONTINUE 2
|
||||
#define BOOT_FIRMWARE_RECOVERY_CONTINUE 3
|
||||
|
||||
/* This function is the driver used by the RO firmware to
|
||||
* determine which copy of the firmware to boot from. It performs
|
||||
* the requisite rollback index checking, including updating them,
|
||||
* if required.
|
||||
*
|
||||
* Returns the code path to follow. It is one of:
|
||||
* BOOT_FIRMWARE_A_CONTINUE Boot from Firmware A
|
||||
* BOOT_FIRMWARE_B_CONTINUE Boot from Firmware B
|
||||
* BOOT_FIRMWARE_RECOVERY_CONTINUE Jump to recovery mode
|
||||
*/
|
||||
int VerifyFirmwareDriver_f(uint8_t* root_key_blob,
|
||||
uint8_t* firmwareA,
|
||||
uint8_t* firmwareB);
|
||||
|
||||
|
||||
#endif /* VBOOT_REFERENCE_FIRMWARE_IMAGE_FW_H_ */
|
||||
@@ -2,73 +2,14 @@
|
||||
* Use of this source code is governed by a BSD-style license that can be
|
||||
* found in the LICENSE file.
|
||||
*
|
||||
* Data structure and API definitions for a verified boot kernel image.
|
||||
* API definitions for a generating and manipulating verified boot kernel images.
|
||||
* (Userland portion.)
|
||||
*/
|
||||
|
||||
#ifndef VBOOT_REFERENCE_KERNEL_IMAGE_H_
|
||||
#define VBOOT_REFERENCE_KERNEL_IMAGE_H_
|
||||
|
||||
#include <inttypes.h>
|
||||
|
||||
#include "rsa.h"
|
||||
#include "sha.h"
|
||||
|
||||
#define KERNEL_MAGIC "CHROMEOS"
|
||||
#define KERNEL_MAGIC_SIZE 8
|
||||
#define KERNEL_CMD_LINE_SIZE 4096
|
||||
|
||||
#define DEV_MODE_ENABLED 1
|
||||
#define DEV_MODE_DISABLED 0
|
||||
|
||||
/* Kernel config file options according to the Chrome OS drive map design. */
|
||||
typedef struct kconfig_options {
|
||||
uint32_t version[2]; /* Configuration file version. */
|
||||
uint8_t cmd_line[KERNEL_CMD_LINE_SIZE]; /* Kernel command line option string
|
||||
* terminated by a NULL character. */
|
||||
uint64_t kernel_len; /* Size of the kernel. */
|
||||
uint64_t kernel_load_addr; /* Load address in memory for the kernel image */
|
||||
uint64_t kernel_entry_addr; /* Address to jump to after kernel is loaded. */
|
||||
} kconfig_options;
|
||||
|
||||
|
||||
typedef struct KernelImage {
|
||||
uint8_t magic[KERNEL_MAGIC_SIZE];
|
||||
/* Key header */
|
||||
uint16_t header_version; /* Header version. */
|
||||
uint16_t header_len; /* Length of the header. */
|
||||
uint16_t firmware_sign_algorithm; /* Signature algorithm used by the firmware
|
||||
* signing key (used to sign this kernel
|
||||
* header. */
|
||||
uint16_t kernel_sign_algorithm; /* Signature algorithm used by the kernel
|
||||
* signing key. */
|
||||
uint16_t kernel_key_version; /* Key Version# for preventing rollbacks. */
|
||||
uint8_t* kernel_sign_key; /* Pre-processed public half of signing key. */
|
||||
/* TODO(gauravsh): Do we need a choice of digest algorithms for the header
|
||||
* checksum? */
|
||||
uint8_t header_checksum[SHA512_DIGEST_SIZE]; /* SHA-512 Crytographic hash of
|
||||
* the concatenation of the
|
||||
* header fields, i.e.
|
||||
* [header_len,
|
||||
* firmware_sign_algorithm,
|
||||
* sign_algorithm, sign_key,
|
||||
* key_version] */
|
||||
|
||||
uint8_t* kernel_key_signature; /* Signature of the header above. */
|
||||
|
||||
uint16_t kernel_version; /* Kernel Version# for preventing rollbacks. */
|
||||
kconfig_options options; /* Other kernel/bootloader options. */
|
||||
|
||||
uint8_t* config_signature; /* Signature of the kernel config file. */
|
||||
|
||||
/* The kernel signature comes first as it may allow us to parallelize
|
||||
* the kernel data fetch and RSA public key operation.
|
||||
*/
|
||||
uint8_t* kernel_signature; /* Signature on the concatenation of
|
||||
* [kernel_version], [options] and
|
||||
* [kernel_data]. */
|
||||
uint8_t* kernel_data; /* Actual kernel data. */
|
||||
|
||||
} KernelImage;
|
||||
#include "kernel_image_fw.h"
|
||||
|
||||
/* Allocate and return a new KernelImage structure. */
|
||||
KernelImage* KernelImageNew(void);
|
||||
@@ -125,79 +66,6 @@ int WriteKernelImage(const char* input_file,
|
||||
*/
|
||||
void PrintKernelImage(const KernelImage* image);
|
||||
|
||||
/* Error Codes for VerifyFirmware. */
|
||||
#define VERIFY_KERNEL_SUCCESS 0
|
||||
#define VERIFY_KERNEL_INVALID_IMAGE 1
|
||||
#define VERIFY_KERNEL_KEY_SIGNATURE_FAILED 2
|
||||
#define VERIFY_KERNEL_INVALID_ALGORITHM 3
|
||||
#define VERIFY_KERNEL_CONFIG_SIGNATURE_FAILED 4
|
||||
#define VERIFY_KERNEL_SIGNATURE_FAILED 5
|
||||
#define VERIFY_KERNEL_WRONG_MAGIC 6
|
||||
#define VERIFY_KERNEL_MAX 7 /* Generic catch-all. */
|
||||
|
||||
extern char* kVerifyKernelErrors[VERIFY_KERNEL_MAX];
|
||||
|
||||
/* Checks for the sanity of the kernel header pointed by [kernel_header_blob].
|
||||
* If [dev_mode] is enabled, also checks the firmware key signature using the
|
||||
* pre-processed public firmware signing key [firmware_sign_key_blob].
|
||||
*
|
||||
* On success, put firmware signature algorithm in [firmware_algorithm],
|
||||
* kernel signature algorithm in [kernel_algorithm], kernel header
|
||||
* length in [header_len], and return 0.
|
||||
* Else, return error code on failure.
|
||||
*/
|
||||
int VerifyKernelHeader(const uint8_t* firmware_sign_key_blob,
|
||||
const uint8_t* kernel_header_blob,
|
||||
const int dev_mode,
|
||||
int* firmware_algorithm,
|
||||
int* kernel_algorithm,
|
||||
int* header_len);
|
||||
|
||||
/* Checks the kernel config (analogous to preamble for firmware) signature on
|
||||
* kernel config pointed by [kernel_config_blob] using the signing key
|
||||
* [kernel_sign_key].
|
||||
*
|
||||
* On success, put kernel length into [kernel_len], and return 0.
|
||||
* Else, return error code on failure.
|
||||
*/
|
||||
int VerifyKernelConfig(RSAPublicKey* kernel_sign_key,
|
||||
const uint8_t* kernel_config_blob,
|
||||
int algorithm,
|
||||
uint64_t* kernel_len);
|
||||
|
||||
/* Checks the signature on the kernel data at location [kernel_data_start].
|
||||
* The length of the actual kernel data is kernel _len and it is assumed to
|
||||
* be prepended with the signature whose size depends on the signature_algorithm
|
||||
* [algorithm].
|
||||
*
|
||||
* Return 0 on success, error code on failure.
|
||||
*/
|
||||
int VerifyKernelData(RSAPublicKey* kernel_sign_key,
|
||||
const uint8_t* kernel_config_start,
|
||||
const uint8_t* kernel_data_start,
|
||||
uint64_t kernel_len,
|
||||
int algorithm);
|
||||
|
||||
/* Performs a chained verify of the kernel blob [kernel_blob]. If
|
||||
* [dev_mode] is 0 [inactive], then the pre-processed public signing key
|
||||
* [root_key_blob] is used to verify the signature of the signing key,
|
||||
* else the check is skipped.
|
||||
*
|
||||
* TODO(gauravsh): Does the dev mode only effect the R/W firmware verification,
|
||||
* or kernel verification, or both?
|
||||
*
|
||||
* Returns 0 on success, error code on failure.
|
||||
*
|
||||
* NOTE: The length of the kernel blob is derived from reading the fields
|
||||
* in the first few bytes of the buffer. This might look risky but in firmware
|
||||
* land, the start address of the kernel_blob will always be fixed depending
|
||||
* on the memory map on the particular platform. In addition, the signature on
|
||||
* length itself is checked early in the verification process for extra safety.
|
||||
*/
|
||||
int VerifyKernel(const uint8_t* signing_key_blob,
|
||||
const uint8_t* kernel_blob,
|
||||
const int dev_mode);
|
||||
|
||||
/* Performs a chained verify of the kernel [image]. If [dev_mode] is
|
||||
* 0 (inactive), then the [firmware_signing_key] is used to verify the signature
|
||||
* of the signing key, else the check is skipped.
|
||||
@@ -227,44 +95,6 @@ int AddKernelKeySignature(KernelImage* image, const char* firmware_key_file);
|
||||
int AddKernelSignature(KernelImage* image,
|
||||
const char* kernel_sigining_key_file);
|
||||
|
||||
/* Returns the logical version of a kernel blob which is calculated as
|
||||
* (kernel_key_version << 16 | kernel_version). */
|
||||
uint32_t GetLogicalKernelVersion(uint8_t* kernel_blob);
|
||||
|
||||
#define BOOT_KERNEL_A_CONTINUE 1
|
||||
#define BOOT_KERNEL_B_CONTINUE 2
|
||||
#define BOOT_KERNEL_RECOVERY_CONTINUE 3
|
||||
|
||||
/* Contains information about the kernel paritition
|
||||
* gleaned from the GPT partition table.
|
||||
*
|
||||
* Based on the Chromium OS Drive Map design document by
|
||||
* rspangler@chromium.org.
|
||||
*
|
||||
*/
|
||||
typedef struct kernel_entry {
|
||||
uint8_t* kernel_blob; /* Pointer to actual kernel. */
|
||||
uint8_t boot_priority; /* 15 = highest, 1 = lowest, 0 = not bootable. */
|
||||
uint8_t boot_tries_remaining; /* Used when boot_priority = 0. */
|
||||
uint8_t boot_success_flag; /* Set to 1 on successful boot by AU. */
|
||||
} kernel_entry;
|
||||
|
||||
void PrintKernelEntry(kernel_entry* entry);
|
||||
|
||||
/* This function is the driver used by the RW firmware to
|
||||
* determine which copy of the kernel to boot from. It performs
|
||||
* the requisite priority and remaining tries checking for a specific
|
||||
* kernel partition, does rollback index checking, including updating
|
||||
* if required.
|
||||
*
|
||||
* Returns the code path to follow. It is one of:
|
||||
* BOOT_KERNEL_A_CONTINUE Boot from Kenrel A
|
||||
* BOOT_KERNEL_B_CONTINUE Boot from Kernel B
|
||||
* BOOT_KERNEL_RECOVERY_CONTINUE Jump to recovery mode
|
||||
*/
|
||||
int VerifyKernelDriver_f(uint8_t* firmware_key_blob,
|
||||
kernel_entry* kernelA,
|
||||
kernel_entry* kernelB,
|
||||
int dev_mode);
|
||||
|
||||
#endif /* VBOOT_REFERENCE_KERNEL_IMAGE_H_ */
|
||||
|
||||
183
include/kernel_image_fw.h
Normal file
183
include/kernel_image_fw.h
Normal file
@@ -0,0 +1,183 @@
|
||||
/* Copyright (c) 2010 The Chromium OS Authors. All rights reserved.
|
||||
* Use of this source code is governed by a BSD-style license that can be
|
||||
* found in the LICENSE file.
|
||||
*
|
||||
* Data structure and API definitions for a verified boot kernel image.
|
||||
* (Firmware Portion)
|
||||
*/
|
||||
|
||||
#ifndef VBOOT_REFERENCE_KERNEL_IMAGE_FW_H_
|
||||
#define VBOOT_REFERENCE_KERNEL_IMAGE_FW_H_
|
||||
|
||||
#include <stdint.h>
|
||||
#include "rsa.h"
|
||||
#include "sha.h"
|
||||
|
||||
#define KERNEL_MAGIC "CHROMEOS"
|
||||
#define KERNEL_MAGIC_SIZE 8
|
||||
#define KERNEL_CMD_LINE_SIZE 4096
|
||||
|
||||
#define DEV_MODE_ENABLED 1
|
||||
#define DEV_MODE_DISABLED 0
|
||||
|
||||
/* Kernel config file options according to the Chrome OS drive map design. */
|
||||
typedef struct kconfig_options {
|
||||
uint32_t version[2]; /* Configuration file version. */
|
||||
uint8_t cmd_line[KERNEL_CMD_LINE_SIZE]; /* Kernel command line option string
|
||||
* terminated by a NULL character. */
|
||||
uint64_t kernel_len; /* Size of the kernel. */
|
||||
uint64_t kernel_load_addr; /* Load address in memory for the kernel image */
|
||||
uint64_t kernel_entry_addr; /* Address to jump to after kernel is loaded. */
|
||||
} kconfig_options;
|
||||
|
||||
typedef struct KernelImage {
|
||||
uint8_t magic[KERNEL_MAGIC_SIZE];
|
||||
/* Key header */
|
||||
uint16_t header_version; /* Header version. */
|
||||
uint16_t header_len; /* Length of the header. */
|
||||
uint16_t firmware_sign_algorithm; /* Signature algorithm used by the firmware
|
||||
* signing key (used to sign this kernel
|
||||
* header. */
|
||||
uint16_t kernel_sign_algorithm; /* Signature algorithm used by the kernel
|
||||
* signing key. */
|
||||
uint16_t kernel_key_version; /* Key Version# for preventing rollbacks. */
|
||||
uint8_t* kernel_sign_key; /* Pre-processed public half of signing key. */
|
||||
/* TODO(gauravsh): Do we need a choice of digest algorithms for the header
|
||||
* checksum? */
|
||||
uint8_t header_checksum[SHA512_DIGEST_SIZE]; /* SHA-512 Crytographic hash of
|
||||
* the concatenation of the
|
||||
* header fields, i.e.
|
||||
* [header_len,
|
||||
* firmware_sign_algorithm,
|
||||
* sign_algorithm, sign_key,
|
||||
* key_version] */
|
||||
|
||||
uint8_t* kernel_key_signature; /* Signature of the header above. */
|
||||
|
||||
uint16_t kernel_version; /* Kernel Version# for preventing rollbacks. */
|
||||
kconfig_options options; /* Other kernel/bootloader options. */
|
||||
|
||||
uint8_t* config_signature; /* Signature of the kernel config file. */
|
||||
|
||||
/* The kernel signature comes first as it may allow us to parallelize
|
||||
* the kernel data fetch and RSA public key operation.
|
||||
*/
|
||||
uint8_t* kernel_signature; /* Signature on the concatenation of
|
||||
* [kernel_version], [options] and
|
||||
* [kernel_data]. */
|
||||
uint8_t* kernel_data; /* Actual kernel data. */
|
||||
|
||||
} KernelImage;
|
||||
|
||||
/* Error Codes for VerifyFirmware. */
|
||||
#define VERIFY_KERNEL_SUCCESS 0
|
||||
#define VERIFY_KERNEL_INVALID_IMAGE 1
|
||||
#define VERIFY_KERNEL_KEY_SIGNATURE_FAILED 2
|
||||
#define VERIFY_KERNEL_INVALID_ALGORITHM 3
|
||||
#define VERIFY_KERNEL_CONFIG_SIGNATURE_FAILED 4
|
||||
#define VERIFY_KERNEL_SIGNATURE_FAILED 5
|
||||
#define VERIFY_KERNEL_WRONG_MAGIC 6
|
||||
#define VERIFY_KERNEL_MAX 7 /* Generic catch-all. */
|
||||
|
||||
extern char* kVerifyKernelErrors[VERIFY_KERNEL_MAX];
|
||||
|
||||
/* Checks for the sanity of the kernel header pointed by [kernel_header_blob].
|
||||
* If [dev_mode] is enabled, also checks the firmware key signature using the
|
||||
* pre-processed public firmware signing key [firmware_sign_key_blob].
|
||||
*
|
||||
* On success, put firmware signature algorithm in [firmware_algorithm],
|
||||
* kernel signature algorithm in [kernel_algorithm], kernel header
|
||||
* length in [header_len], and return 0.
|
||||
* Else, return error code on failure.
|
||||
*/
|
||||
int VerifyKernelHeader(const uint8_t* firmware_sign_key_blob,
|
||||
const uint8_t* kernel_header_blob,
|
||||
const int dev_mode,
|
||||
int* firmware_algorithm,
|
||||
int* kernel_algorithm,
|
||||
int* header_len);
|
||||
|
||||
/* Checks the kernel config (analogous to preamble for firmware) signature on
|
||||
* kernel config pointed by [kernel_config_blob] using the signing key
|
||||
* [kernel_sign_key].
|
||||
*
|
||||
* On success, put kernel length into [kernel_len], and return 0.
|
||||
* Else, return error code on failure.
|
||||
*/
|
||||
int VerifyKernelConfig(RSAPublicKey* kernel_sign_key,
|
||||
const uint8_t* kernel_config_blob,
|
||||
int algorithm,
|
||||
uint64_t* kernel_len);
|
||||
|
||||
/* Checks the signature on the kernel data at location [kernel_data_start].
|
||||
* The length of the actual kernel data is kernel _len and it is assumed to
|
||||
* be prepended with the signature whose size depends on the signature_algorithm
|
||||
* [algorithm].
|
||||
*
|
||||
* Return 0 on success, error code on failure.
|
||||
*/
|
||||
int VerifyKernelData(RSAPublicKey* kernel_sign_key,
|
||||
const uint8_t* kernel_config_start,
|
||||
const uint8_t* kernel_data_start,
|
||||
uint64_t kernel_len,
|
||||
int algorithm);
|
||||
|
||||
/* Performs a chained verify of the kernel blob [kernel_blob]. If
|
||||
* [dev_mode] is 0 [inactive], then the pre-processed public signing key
|
||||
* [root_key_blob] is used to verify the signature of the signing key,
|
||||
* else the check is skipped.
|
||||
*
|
||||
* TODO(gauravsh): Does the dev mode only effect the R/W firmware verification,
|
||||
* or kernel verification, or both?
|
||||
*
|
||||
* Returns 0 on success, error code on failure.
|
||||
*
|
||||
* NOTE: The length of the kernel blob is derived from reading the fields
|
||||
* in the first few bytes of the buffer. This might look risky but in firmware
|
||||
* land, the start address of the kernel_blob will always be fixed depending
|
||||
* on the memory map on the particular platform. In addition, the signature on
|
||||
* length itself is checked early in the verification process for extra safety.
|
||||
*/
|
||||
int VerifyKernel(const uint8_t* signing_key_blob,
|
||||
const uint8_t* kernel_blob,
|
||||
const int dev_mode);
|
||||
|
||||
/* Returns the logical version of a kernel blob which is calculated as
|
||||
* (kernel_key_version << 16 | kernel_version). */
|
||||
uint32_t GetLogicalKernelVersion(uint8_t* kernel_blob);
|
||||
|
||||
#define BOOT_KERNEL_A_CONTINUE 1
|
||||
#define BOOT_KERNEL_B_CONTINUE 2
|
||||
#define BOOT_KERNEL_RECOVERY_CONTINUE 3
|
||||
|
||||
/* Contains information about the kernel paritition
|
||||
* gleaned from the GPT partition table.
|
||||
*
|
||||
* Based on the Chromium OS Drive Map design document by
|
||||
* rspangler@chromium.org.
|
||||
*
|
||||
*/
|
||||
typedef struct kernel_entry {
|
||||
uint8_t* kernel_blob; /* Pointer to actual kernel. */
|
||||
uint8_t boot_priority; /* 15 = highest, 1 = lowest, 0 = not bootable. */
|
||||
uint8_t boot_tries_remaining; /* Used when boot_priority = 0. */
|
||||
uint8_t boot_success_flag; /* Set to 1 on successful boot by AU. */
|
||||
} kernel_entry;
|
||||
|
||||
/* This function is the driver used by the RW firmware to
|
||||
* determine which copy of the kernel to boot from. It performs
|
||||
* the requisite priority and remaining tries checking for a specific
|
||||
* kernel partition, does rollback index checking, including updating
|
||||
* if required.
|
||||
*
|
||||
* Returns the code path to follow. It is one of:
|
||||
* BOOT_KERNEL_A_CONTINUE Boot from Kenrel A
|
||||
* BOOT_KERNEL_B_CONTINUE Boot from Kernel B
|
||||
* BOOT_KERNEL_RECOVERY_CONTINUE Jump to recovery mode
|
||||
*/
|
||||
int VerifyKernelDriver_f(uint8_t* firmware_key_blob,
|
||||
kernel_entry* kernelA,
|
||||
kernel_entry* kernelB,
|
||||
int dev_mode);
|
||||
|
||||
#endif /* VBOOT_REFERENCE_KERNEL_IMAGE_FW_H_ */
|
||||
@@ -16,41 +16,6 @@
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#define POSSIBLY_UNUSED __attribute__((unused))
|
||||
|
||||
#ifdef __STRICT_ANSI__
|
||||
#define INLINE
|
||||
#else
|
||||
#define INLINE inline
|
||||
#endif
|
||||
|
||||
/* Outputs an error message and quits the program.
|
||||
*/
|
||||
POSSIBLY_UNUSED
|
||||
static void error(const char *format, ...) {
|
||||
va_list ap;
|
||||
va_start(ap, format);
|
||||
fprintf(stderr, "ERROR: ");
|
||||
vfprintf(stderr, format, ap);
|
||||
va_end(ap);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
/* Outputs a warning and continues.
|
||||
*/
|
||||
POSSIBLY_UNUSED
|
||||
static void warning(const char *format, ...) {
|
||||
va_list ap;
|
||||
va_start(ap, format);
|
||||
fprintf(stderr, "WARNING: ");
|
||||
vfprintf(stderr, format, ap);
|
||||
va_end(ap);
|
||||
}
|
||||
|
||||
#define assert(expr) do { if (!(expr)) { \
|
||||
error("assert fail: %s at %s:%d\n", \
|
||||
#expr, __FILE__, __LINE__); }} while(0)
|
||||
|
||||
/* Call this first.
|
||||
*/
|
||||
void TlclLibinit(void);
|
||||
|
||||
@@ -10,9 +10,20 @@
|
||||
#ifndef VBOOT_REFERENCE_UTILITY_H_
|
||||
#define VBOOT_REFERENCE_UTILITY_H_
|
||||
|
||||
#include <inttypes.h>
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
|
||||
/* Outputs an error message and quits. */
|
||||
void error(const char *format, ...);
|
||||
|
||||
/* Outputs debug/warning messages. */
|
||||
void debug(const char *format, ...);
|
||||
|
||||
|
||||
#define assert(expr) do { if (!(expr)) { \
|
||||
error("assert fail: %s at %s:%d\n", \
|
||||
#expr, __FILE__, __LINE__); }} while(0)
|
||||
|
||||
/* Combine [msw] and [lsw] uint16s to a uint32_t with its [msw] and
|
||||
* [lsw] forming the most and least signficant 16-bit words.
|
||||
*/
|
||||
|
||||
@@ -8,26 +8,31 @@ INCLUDES ?= -I../include/
|
||||
TOP ?= ../
|
||||
|
||||
BASE_LIBS = $(TOP)/crypto/libcrypto.a $(TOP)/common/libcommon.a
|
||||
IMAGE_LIBS = $(TOP)/utils/firmware_image.o $(TOP)/utils/kernel_image.o
|
||||
IMAGE_LIBS = $(TOP)/utils/firmware_image.o \
|
||||
$(TOP)/utils/firmware_image_fw.o \
|
||||
$(TOP)/utils/kernel_image.o \
|
||||
$(TOP)/utils/kernel_image_fw.o
|
||||
UTIL_LIBS = $(TOP)/utils/file_keys.o $(TOP)/utils/signature_digest.o
|
||||
LIBS = $(IMAGE_LIBS) $(UTIL_LIBS) -lcrypto $(BASE_LIBS)
|
||||
|
||||
tests: big_firmware_tests \
|
||||
big_kernel_tests \
|
||||
firmware_image_tests \
|
||||
firmware_rollback_tests \
|
||||
firmware_splicing_tests \
|
||||
firmware_verify_benchmark \
|
||||
kernel_image_tests \
|
||||
kernel_rollback_tests \
|
||||
kernel_splicing_tests \
|
||||
kernel_verify_benchmark \
|
||||
rsa_padding_test \
|
||||
rsa_verify_benchmark \
|
||||
sha_benchmark \
|
||||
sha_tests \
|
||||
verify_firmware_fuzz_driver \
|
||||
verify_kernel_fuzz_driver
|
||||
TEST_BINS = big_firmware_tests \
|
||||
big_kernel_tests \
|
||||
firmware_image_tests \
|
||||
firmware_rollback_tests \
|
||||
firmware_splicing_tests \
|
||||
firmware_verify_benchmark \
|
||||
kernel_image_tests \
|
||||
kernel_rollback_tests \
|
||||
kernel_splicing_tests \
|
||||
kernel_verify_benchmark \
|
||||
rsa_padding_test \
|
||||
rsa_verify_benchmark \
|
||||
sha_benchmark \
|
||||
sha_tests \
|
||||
verify_firmware_fuzz_driver \
|
||||
verify_kernel_fuzz_driver
|
||||
|
||||
all: $(TEST_BINS)
|
||||
|
||||
big_firmware_tests: big_firmware_tests.c rollback_index_mock.c test_common.c
|
||||
$(CC) $(CFLAGS) $(INCLUDES) $^ -o $@ $(LIBS)
|
||||
@@ -87,19 +92,4 @@ verify_kernel_fuzz_driver: verify_kernel_fuzz_driver.c rollback_index_mock.c
|
||||
$(CC) $(CFLAGS) $(INCLUDES) $^ -o $@ $(LIBS)
|
||||
|
||||
clean:
|
||||
rm -f big_firmware_tests \
|
||||
big_kernel_tests \
|
||||
firmware_image_tests \
|
||||
firmware_rollback_tests \
|
||||
firmware_splicing_tests \
|
||||
firmware_verify_benchmark \
|
||||
kernel_image_tests \
|
||||
kernel_rollback_tests \
|
||||
kernel_splicing_tests \
|
||||
kernel_verify_benchmark \
|
||||
rsa_padding_test \
|
||||
rsa_verify_benchmark \
|
||||
sha_benchmark \
|
||||
sha_tests \
|
||||
verify_firmware_fuzz_driver \
|
||||
verify_kernel_fuzz_driver
|
||||
rm -f $(TEST_BINS)
|
||||
|
||||
@@ -8,43 +8,53 @@ CFLAGS ?= -Wall -DNDEBUG -O3 -Werror
|
||||
INCLUDES ?= -I../include/
|
||||
TOP ?= ../
|
||||
|
||||
LIBS = firmware_image.o kernel_image.o signature_digest.o file_keys.o \
|
||||
rollback_index.o
|
||||
LIBS = file_keys.o \
|
||||
firmware_image.o \
|
||||
firmware_image_fw.o \
|
||||
kernel_image.o \
|
||||
kernel_image_fw.o \
|
||||
rollback_index.o \
|
||||
signature_digest.o
|
||||
|
||||
FIRMWARELIBS = $(TOP)/crypto/libcrypto.a $(TOP)/common/libcommon.a
|
||||
|
||||
all: dumpRSAPublicKey verify_data file_keys.o signature_digest.o \
|
||||
firmware_image.o kernel_image.o signature_digest.o \
|
||||
signature_digest_utility firmware_utility kernel_utility \
|
||||
rollback_index.o
|
||||
TARGET_BINS = $(LIBS) \
|
||||
dumpRSAPublicKey \
|
||||
firmware_utility \
|
||||
kernel_utility \
|
||||
signature_digest_utility \
|
||||
verify_data
|
||||
|
||||
all: $(TARGET_BINS)
|
||||
|
||||
.c.o:
|
||||
$(CC) $(CFLAGS) $(INCLUDES) -c $< -o $@
|
||||
|
||||
dumpRSAPublicKey: dumpRSAPublicKey.c
|
||||
$(CC) $(CFLAGS) $< -o $@ -lcrypto
|
||||
|
||||
verify_data: verify_data.c $(LIBS) $(FIRMWARELIBS)
|
||||
$(CC) $(CFLAGS) $(INCLUDES) $< -o $@ $(LIBS) $(FIRMWARELIBS) -lcrypto
|
||||
|
||||
signature_digest_utility: signature_digest_utility.c $(LIBS) $(FIRMWARELIBS)
|
||||
$(CC) $(CFLAGS) $(INCLUDES) $< -o $@ $(LIBS) $(FIRMWARELIBS) -lcrypto
|
||||
firmware_image_fw.o: firmware_image_fw.c
|
||||
$(CC) $(CFLAGS) -ansi $(INCLUDES) -c $^ -o $@
|
||||
|
||||
firmware_utility: firmware_utility.cc $(LIBS) $(FIRMWARELIBS)
|
||||
$(CXX) $(CFLAGS) $(INCLUDES) -ggdb -D__STDC_LIMIT_MACROS $< \
|
||||
-o $@ $(FIRMWARELIBS) $(LIBS) $(TOP)/common/libcommon.a \
|
||||
-lcrypto
|
||||
|
||||
kernel_image_fw.o: kernel_image_fw.c
|
||||
$(CC) $(CFLAGS) -ansi $(INCLUDES) -c $< -o $@
|
||||
|
||||
kernel_utility: kernel_utility.cc $(LIBS) $(FIRMWARELIBS)
|
||||
$(CXX) $(CFLAGS) $(INCLUDES) -ggdb -D__STDC_LIMIT_MACROS $< \
|
||||
-o $@ $(FIRMWARELIBS) $(LIBS) $(TOP)/common/libcommon.a \
|
||||
-lcrypto
|
||||
|
||||
.c.o:
|
||||
$(CC) $(CFLAGS) $(INCLUDES) -c $< -o $@
|
||||
signature_digest_utility: signature_digest_utility.c $(LIBS) $(FIRMWARELIBS)
|
||||
$(CC) $(CFLAGS) $(INCLUDES) $< -o $@ $(LIBS) $(FIRMWARELIBS) -lcrypto
|
||||
|
||||
firmware_image.o: firmware_image.c
|
||||
$(CC) -ansi $(CFLAGS) $(INCLUDES) -c $< -o $@
|
||||
verify_data: verify_data.c $(LIBS) $(FIRMWARELIBS)
|
||||
$(CC) $(CFLAGS) $(INCLUDES) $< -o $@ $(LIBS) $(FIRMWARELIBS) -lcrypto
|
||||
|
||||
kernel_image.o: kernel_image.c
|
||||
$(CC) -ansi $(CFLAGS) $(INCLUDES) -c $< -o $@
|
||||
clean:
|
||||
rm -f dumpRSAPublicKey verify_data signature_digest firmware_utility \
|
||||
kernel_utility signature_digest_utility $(LIBS)
|
||||
rm -f $(TARGET_BINS) $(LIBS)
|
||||
|
||||
|
||||
@@ -8,7 +8,7 @@
|
||||
* /tools/DumpPublicKey.java). Uses the OpenSSL X509 and BIGNUM library.
|
||||
*/
|
||||
|
||||
#include <inttypes.h>
|
||||
#include <stdint.h>
|
||||
#include <openssl/bn.h>
|
||||
#include <openssl/evp.h>
|
||||
#include <openssl/pem.h>
|
||||
|
||||
@@ -9,14 +9,12 @@
|
||||
|
||||
#include <fcntl.h>
|
||||
#include <limits.h>
|
||||
#include <stdio.h>
|
||||
#include <sys/types.h>
|
||||
#include <sys/stat.h>
|
||||
#include <unistd.h>
|
||||
|
||||
#include "file_keys.h"
|
||||
#include "padding.h"
|
||||
#include "rollback_index.h"
|
||||
#include "rsa_utility.h"
|
||||
#include "sha_utility.h"
|
||||
#include "signature_digest.h"
|
||||
@@ -71,7 +69,7 @@ FirmwareImage* ReadFirmwareImage(const char* input_file) {
|
||||
/* Read and compare magic bytes. */
|
||||
StatefulMemcpy(&st, &image->magic, FIRMWARE_MAGIC_SIZE);
|
||||
if (SafeMemcmp(image->magic, FIRMWARE_MAGIC, FIRMWARE_MAGIC_SIZE)) {
|
||||
fprintf(stderr, "Wrong Firmware Magic.\n");
|
||||
debug("Wrong Firmware Magic.\n");
|
||||
Free(firmware_buf);
|
||||
return NULL;
|
||||
}
|
||||
@@ -92,8 +90,8 @@ FirmwareImage* ReadFirmwareImage(const char* input_file) {
|
||||
/* Check whether the header length is correct. */
|
||||
header_len = GetFirmwareHeaderLen(image);
|
||||
if (header_len != image->header_len) {
|
||||
fprintf(stderr, "Header length mismatch. Got: %d Expected: %d\n",
|
||||
image->header_len, header_len);
|
||||
debug("Header length mismatch. Got: %d Expected: %d\n",
|
||||
image->header_len, header_len);
|
||||
Free(firmware_buf);
|
||||
return NULL;
|
||||
}
|
||||
@@ -109,7 +107,7 @@ FirmwareImage* ReadFirmwareImage(const char* input_file) {
|
||||
CalculateFirmwareHeaderChecksum(image, header_checksum);
|
||||
if (SafeMemcmp(header_checksum, image->header_checksum,
|
||||
FIELD_LEN(header_checksum))) {
|
||||
fprintf(stderr, "Invalid firmware header checksum!\n");
|
||||
debug("Invalid firmware header checksum!\n");
|
||||
Free(firmware_buf);
|
||||
return NULL;
|
||||
}
|
||||
@@ -271,17 +269,17 @@ int WriteFirmwareImage(const char* input_file,
|
||||
if (!image)
|
||||
return 0;
|
||||
if (-1 == (fd = creat(input_file, S_IRWXU))) {
|
||||
fprintf(stderr, "Couldn't open file for writing.\n");
|
||||
debug("Couldn't open file for writing.\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
firmware_blob = GetFirmwareBlob(image, &blob_len);
|
||||
if (!firmware_blob) {
|
||||
fprintf(stderr, "Couldn't create firmware blob from FirmwareImage.\n");
|
||||
debug("Couldn't create firmware blob from FirmwareImage.\n");
|
||||
return 0;
|
||||
}
|
||||
if (blob_len != write(fd, firmware_blob, blob_len)) {
|
||||
fprintf(stderr, "Couldn't write Firmware Image to file: %s\n", input_file);
|
||||
debug("Couldn't write Firmware Image to file: %s\n", input_file);
|
||||
Free(firmware_blob);
|
||||
close(fd);
|
||||
return 0;
|
||||
@@ -296,7 +294,7 @@ void PrintFirmwareImage(const FirmwareImage* image) {
|
||||
return;
|
||||
|
||||
/* Print header. */
|
||||
printf("Header Length = %d\n"
|
||||
debug("Header Length = %d\n"
|
||||
"Firmware Signature Algorithm = %s\n"
|
||||
"Firmware Key Version = %d\n\n",
|
||||
image->header_len,
|
||||
@@ -304,201 +302,13 @@ void PrintFirmwareImage(const FirmwareImage* image) {
|
||||
image->firmware_key_version);
|
||||
/* TODO(gauravsh): Output hash and key signature here? */
|
||||
/* Print preamble. */
|
||||
printf("Firmware Version = %d\n"
|
||||
debug("Firmware Version = %d\n"
|
||||
"Firmware Length = %" PRIu64 "\n\n",
|
||||
image->firmware_version,
|
||||
image->firmware_len);
|
||||
/* Output key signature here? */
|
||||
}
|
||||
|
||||
char* kVerifyFirmwareErrors[VERIFY_FIRMWARE_MAX] = {
|
||||
"Success.",
|
||||
"Invalid Image.",
|
||||
"Root Key Signature Failed.",
|
||||
"Invalid Verification Algorithm.",
|
||||
"Preamble Signature Failed.",
|
||||
"Firmware Signature Failed.",
|
||||
"Wrong Firmware Magic.",
|
||||
"Invalid Firmware Header Checksum.",
|
||||
"Firmware Signing Key Rollback.",
|
||||
"Firmware Version Rollback."
|
||||
};
|
||||
|
||||
int VerifyFirmwareHeader(const uint8_t* root_key_blob,
|
||||
const uint8_t* header_blob,
|
||||
int* algorithm,
|
||||
int* header_len) {
|
||||
int firmware_sign_key_len;
|
||||
int root_key_len;
|
||||
uint16_t hlen, algo;
|
||||
uint8_t* header_checksum = NULL;
|
||||
|
||||
/* Base Offset for the header_checksum field. Actual offset is
|
||||
* this + firmware_sign_key_len. */
|
||||
int base_header_checksum_offset = (FIELD_LEN(header_len) +
|
||||
FIELD_LEN(firmware_sign_algorithm) +
|
||||
FIELD_LEN(firmware_key_version));
|
||||
|
||||
|
||||
root_key_len = RSAProcessedKeySize(ROOT_SIGNATURE_ALGORITHM);
|
||||
Memcpy(&hlen, header_blob, sizeof(hlen));
|
||||
Memcpy(&algo,
|
||||
header_blob + FIELD_LEN(firmware_sign_algorithm),
|
||||
sizeof(algo));
|
||||
if (algo >= kNumAlgorithms)
|
||||
return VERIFY_FIRMWARE_INVALID_ALGORITHM;
|
||||
*algorithm = (int) algo;
|
||||
firmware_sign_key_len = RSAProcessedKeySize(*algorithm);
|
||||
|
||||
/* Verify that header len is correct. */
|
||||
if (hlen != (base_header_checksum_offset +
|
||||
firmware_sign_key_len +
|
||||
FIELD_LEN(header_checksum)))
|
||||
return VERIFY_FIRMWARE_INVALID_IMAGE;
|
||||
|
||||
*header_len = (int) hlen;
|
||||
|
||||
/* Verify if the hash of the header is correct. */
|
||||
header_checksum = DigestBuf(header_blob,
|
||||
*header_len - FIELD_LEN(header_checksum),
|
||||
SHA512_DIGEST_ALGORITHM);
|
||||
if (SafeMemcmp(header_checksum,
|
||||
header_blob + (base_header_checksum_offset +
|
||||
firmware_sign_key_len),
|
||||
FIELD_LEN(header_checksum))) {
|
||||
Free(header_checksum);
|
||||
return VERIFY_FIRMWARE_WRONG_HEADER_CHECKSUM;
|
||||
}
|
||||
Free(header_checksum);
|
||||
|
||||
/* Root key signature on the firmware signing key is always checked
|
||||
* irrespective of dev mode. */
|
||||
if (!RSAVerifyBinary_f(root_key_blob, NULL, /* Key to use */
|
||||
header_blob, /* Data to verify */
|
||||
*header_len, /* Length of data */
|
||||
header_blob + *header_len, /* Expected Signature */
|
||||
ROOT_SIGNATURE_ALGORITHM))
|
||||
return VERIFY_FIRMWARE_ROOT_SIGNATURE_FAILED;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int VerifyFirmwarePreamble(RSAPublicKey* firmware_sign_key,
|
||||
const uint8_t* preamble_blob,
|
||||
int algorithm,
|
||||
uint64_t* firmware_len) {
|
||||
uint64_t len;
|
||||
int preamble_len;
|
||||
uint16_t firmware_version;
|
||||
|
||||
Memcpy(&firmware_version, preamble_blob, sizeof(firmware_version));
|
||||
|
||||
preamble_len = (FIELD_LEN(firmware_version) +
|
||||
FIELD_LEN(firmware_len) +
|
||||
FIELD_LEN(preamble));
|
||||
if (!RSAVerifyBinary_f(NULL, firmware_sign_key, /* Key to use */
|
||||
preamble_blob, /* Data to verify */
|
||||
preamble_len, /* Length of data */
|
||||
preamble_blob + preamble_len, /* Expected Signature */
|
||||
algorithm))
|
||||
return VERIFY_FIRMWARE_PREAMBLE_SIGNATURE_FAILED;
|
||||
|
||||
Memcpy(&len, preamble_blob + FIELD_LEN(firmware_version),
|
||||
sizeof(len));
|
||||
*firmware_len = len;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int VerifyFirmwareData(RSAPublicKey* firmware_sign_key,
|
||||
const uint8_t* preamble_start,
|
||||
const uint8_t* firmware_data_start,
|
||||
uint64_t firmware_len,
|
||||
int algorithm) {
|
||||
int signature_len = siglen_map[algorithm];
|
||||
uint8_t* digest;
|
||||
DigestContext ctx;
|
||||
|
||||
/* Since the firmware signature is over the preamble and the firmware data,
|
||||
* which does not form a contiguous region of memory, we calculate the
|
||||
* message digest ourselves. */
|
||||
DigestInit(&ctx, algorithm);
|
||||
DigestUpdate(&ctx, preamble_start, GetFirmwarePreambleLen());
|
||||
DigestUpdate(&ctx, firmware_data_start + signature_len, firmware_len);
|
||||
digest = DigestFinal(&ctx);
|
||||
if (!RSAVerifyBinaryWithDigest_f(
|
||||
NULL, firmware_sign_key, /* Key to use. */
|
||||
digest, /* Digest of the data to verify. */
|
||||
firmware_data_start, /* Expected Signature */
|
||||
algorithm)) {
|
||||
Free(digest);
|
||||
return VERIFY_FIRMWARE_SIGNATURE_FAILED;
|
||||
}
|
||||
Free(digest);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int VerifyFirmware(const uint8_t* root_key_blob,
|
||||
const uint8_t* firmware_blob) {
|
||||
int error_code = 0;
|
||||
int algorithm; /* Signing key algorithm. */
|
||||
RSAPublicKey* firmware_sign_key = NULL;
|
||||
int firmware_sign_key_len, signature_len, header_len;
|
||||
uint64_t firmware_len;
|
||||
const uint8_t* header_ptr = NULL; /* Pointer to header. */
|
||||
const uint8_t* firmware_sign_key_ptr = NULL; /* Pointer to signing key. */
|
||||
const uint8_t* preamble_ptr = NULL; /* Pointer to preamble block. */
|
||||
const uint8_t* firmware_ptr = NULL; /* Pointer to firmware signature/data. */
|
||||
|
||||
/* Note: All the offset calculations are based on struct FirmwareImage which
|
||||
* is defined in include/firmware_image.h. */
|
||||
|
||||
/* Compare magic bytes. */
|
||||
if (SafeMemcmp(firmware_blob, FIRMWARE_MAGIC, FIRMWARE_MAGIC_SIZE))
|
||||
return VERIFY_FIRMWARE_WRONG_MAGIC;
|
||||
header_ptr = firmware_blob + FIRMWARE_MAGIC_SIZE;
|
||||
|
||||
/* Only continue if header verification succeeds. */
|
||||
if ((error_code = VerifyFirmwareHeader(root_key_blob, header_ptr,
|
||||
&algorithm, &header_len)))
|
||||
return error_code; /* AKA jump to revovery. */
|
||||
|
||||
/* Parse signing key into RSAPublicKey structure since it is required multiple
|
||||
* times. */
|
||||
firmware_sign_key_len = RSAProcessedKeySize(algorithm);
|
||||
firmware_sign_key_ptr = header_ptr + (FIELD_LEN(header_len) +
|
||||
FIELD_LEN(firmware_sign_algorithm) +
|
||||
FIELD_LEN(firmware_key_version));
|
||||
firmware_sign_key = RSAPublicKeyFromBuf(firmware_sign_key_ptr,
|
||||
firmware_sign_key_len);
|
||||
signature_len = siglen_map[algorithm];
|
||||
|
||||
/* Only continue if preamble verification succeeds. */
|
||||
preamble_ptr = (header_ptr + header_len +
|
||||
FIELD_LEN(firmware_key_signature));
|
||||
if ((error_code = VerifyFirmwarePreamble(firmware_sign_key, preamble_ptr,
|
||||
algorithm,
|
||||
&firmware_len))) {
|
||||
RSAPublicKeyFree(firmware_sign_key);
|
||||
fprintf(stderr, "Couldn't verify Firmware preamble.\n");
|
||||
return error_code; /* AKA jump to recovery. */
|
||||
}
|
||||
/* Only continue if firmware data verification succeeds. */
|
||||
firmware_ptr = (preamble_ptr +
|
||||
GetFirmwarePreambleLen() +
|
||||
signature_len);
|
||||
|
||||
if ((error_code = VerifyFirmwareData(firmware_sign_key, preamble_ptr,
|
||||
firmware_ptr,
|
||||
firmware_len,
|
||||
algorithm))) {
|
||||
RSAPublicKeyFree(firmware_sign_key);
|
||||
fprintf(stderr, "Couldn't verify Firmware data.\n");
|
||||
return error_code; /* AKA jump to recovery. */
|
||||
}
|
||||
|
||||
RSAPublicKeyFree(firmware_sign_key);
|
||||
return 0; /* Success! */
|
||||
}
|
||||
|
||||
int VerifyFirmwareImage(const RSAPublicKey* root_key,
|
||||
const FirmwareImage* image) {
|
||||
RSAPublicKey* firmware_sign_key = NULL;
|
||||
@@ -662,114 +472,3 @@ int AddFirmwareSignature(FirmwareImage* image, const char* signing_key_file) {
|
||||
Free(preamble_blob);
|
||||
return 1;
|
||||
}
|
||||
|
||||
uint32_t GetLogicalFirmwareVersion(uint8_t* firmware_blob) {
|
||||
uint16_t firmware_key_version;
|
||||
uint16_t firmware_version;
|
||||
uint16_t firmware_sign_algorithm;
|
||||
int firmware_sign_key_len;
|
||||
Memcpy(&firmware_sign_algorithm,
|
||||
firmware_blob + (FIELD_LEN(magic) + /* Offset to field. */
|
||||
FIELD_LEN(header_len)),
|
||||
sizeof(firmware_sign_algorithm));
|
||||
Memcpy(&firmware_key_version,
|
||||
firmware_blob + (FIELD_LEN(magic) + /* Offset to field. */
|
||||
FIELD_LEN(header_len) +
|
||||
FIELD_LEN(firmware_sign_algorithm)),
|
||||
sizeof(firmware_key_version));
|
||||
if (firmware_sign_algorithm >= kNumAlgorithms)
|
||||
return 0;
|
||||
firmware_sign_key_len = RSAProcessedKeySize(firmware_sign_algorithm);
|
||||
Memcpy(&firmware_version,
|
||||
firmware_blob + (FIELD_LEN(magic) + /* Offset to field. */
|
||||
FIELD_LEN(header_len) +
|
||||
FIELD_LEN(firmware_key_version) +
|
||||
firmware_sign_key_len +
|
||||
FIELD_LEN(header_checksum) +
|
||||
FIELD_LEN(firmware_key_signature)),
|
||||
sizeof(firmware_version));
|
||||
return CombineUint16Pair(firmware_key_version, firmware_version);
|
||||
}
|
||||
|
||||
int VerifyFirmwareDriver_f(uint8_t* root_key_blob,
|
||||
uint8_t* firmwareA,
|
||||
uint8_t* firmwareB) {
|
||||
/* Contains the logical firmware version (32-bit) which is calculated as
|
||||
* (firmware_key_version << 16 | firmware_version) where
|
||||
* [firmware_key_version] [firmware_version] are both 16-bit.
|
||||
*/
|
||||
uint32_t firmwareA_lversion, firmwareB_lversion;
|
||||
uint8_t firmwareA_is_verified = 0; /* Whether firmwareA verify succeeded. */
|
||||
uint32_t min_lversion; /* Minimum of firmware A and firmware lversion. */
|
||||
uint32_t stored_lversion; /* Stored logical version in the TPM. */
|
||||
|
||||
/* Initialize the TPM since we'll be reading the rollback indices. */
|
||||
SetupTPM();
|
||||
|
||||
/* We get the key versions by reading directly from the image blobs without
|
||||
* any additional (expensive) sanity checking on the blob since it's faster to
|
||||
* outright reject a firmware with an older firmware key version. A malformed
|
||||
* or corrupted firmware blob will still fail when VerifyFirmware() is called
|
||||
* on it.
|
||||
*/
|
||||
firmwareA_lversion = GetLogicalFirmwareVersion(firmwareA);
|
||||
firmwareB_lversion = GetLogicalFirmwareVersion(firmwareB);
|
||||
min_lversion = Min(firmwareA_lversion, firmwareB_lversion);
|
||||
stored_lversion = CombineUint16Pair(GetStoredVersion(FIRMWARE_KEY_VERSION),
|
||||
GetStoredVersion(FIRMWARE_VERSION));
|
||||
/* Always try FirmwareA first. */
|
||||
if (VERIFY_FIRMWARE_SUCCESS == VerifyFirmware(root_key_blob, firmwareA))
|
||||
firmwareA_is_verified = 1;
|
||||
if (firmwareA_is_verified && (stored_lversion < firmwareA_lversion)) {
|
||||
/* Stored version may need to be updated but only if FirmwareB
|
||||
* is successfully verified and has a logical version greater than
|
||||
* the stored logical version. */
|
||||
if (stored_lversion < firmwareB_lversion) {
|
||||
if (VERIFY_FIRMWARE_SUCCESS == VerifyFirmware(root_key_blob, firmwareB)) {
|
||||
WriteStoredVersion(FIRMWARE_KEY_VERSION,
|
||||
(uint16_t) (min_lversion >> 16));
|
||||
WriteStoredVersion(FIRMWARE_VERSION,
|
||||
(uint16_t) (min_lversion & 0x00FFFF));
|
||||
stored_lversion = min_lversion; /* Update stored version as it's used
|
||||
* later. */
|
||||
}
|
||||
}
|
||||
}
|
||||
/* Lock Firmware TPM rollback indices from further writes. */
|
||||
/* TODO(gauravsh): Figure out if these can be combined into one
|
||||
* 32-bit location since we seem to always use them together. This can help
|
||||
* us minimize the number of NVRAM writes/locks (which are limited over flash
|
||||
* memory lifetimes.
|
||||
*/
|
||||
LockStoredVersion(FIRMWARE_KEY_VERSION);
|
||||
LockStoredVersion(FIRMWARE_VERSION);
|
||||
|
||||
/* Determine which firmware (if any) to jump to.
|
||||
*
|
||||
* We always attempt to jump to FirmwareA first. If verification of FirmwareA
|
||||
* fails, we try FirmwareB. In all cases, if the firmware successfully
|
||||
* verified but is a rollback, we jump to recovery.
|
||||
*
|
||||
* Note: This means that if FirmwareA verified successfully and is a
|
||||
* rollback, then no attempt is made to check FirmwareB. We still jump to
|
||||
* recovery. FirmwareB is only used as a backup in case FirmwareA gets
|
||||
* corrupted. Since newer firmware updates are always written to A,
|
||||
* the case where firmware A is verified but a rollback should not occur in
|
||||
* normal operation.
|
||||
*/
|
||||
if (firmwareA_is_verified) {
|
||||
if (stored_lversion <= firmwareA_lversion)
|
||||
return BOOT_FIRMWARE_A_CONTINUE;
|
||||
} else {
|
||||
/* If FirmwareA was not valid, then we skipped over the
|
||||
* check to update the rollback indices and a Verify of FirmwareB wasn't
|
||||
* attempted.
|
||||
* If FirmwareB is not a rollback, then we attempt to do the verification.
|
||||
*/
|
||||
if (stored_lversion <= firmwareB_lversion &&
|
||||
(VERIFY_FIRMWARE_SUCCESS == VerifyFirmware(root_key_blob, firmwareB)))
|
||||
return BOOT_FIRMWARE_B_CONTINUE;
|
||||
}
|
||||
/* D'oh: No bootable firmware. */
|
||||
return BOOT_FIRMWARE_RECOVERY_CONTINUE;
|
||||
}
|
||||
|
||||
323
utils/firmware_image_fw.c
Normal file
323
utils/firmware_image_fw.c
Normal file
@@ -0,0 +1,323 @@
|
||||
/* Copyright (c) 2010 The Chromium OS Authors. All rights reserved.
|
||||
* Use of this source code is governed by a BSD-style license that can be
|
||||
* found in the LICENSE file.
|
||||
*
|
||||
* Functions for verifying a verified boot firmware image.
|
||||
* (Firmware Portion)
|
||||
*/
|
||||
|
||||
#include "firmware_image_fw.h"
|
||||
|
||||
#include "padding.h"
|
||||
#include "rollback_index.h"
|
||||
#include "rsa_utility.h"
|
||||
#include "sha_utility.h"
|
||||
#include "utility.h"
|
||||
|
||||
/* Macro to determine the size of a field structure in the FirmwareImage
|
||||
* structure. */
|
||||
#define FIELD_LEN(field) (sizeof(((FirmwareImage*)0)->field))
|
||||
|
||||
char* kVerifyFirmwareErrors[VERIFY_FIRMWARE_MAX] = {
|
||||
"Success.",
|
||||
"Invalid Image.",
|
||||
"Root Key Signature Failed.",
|
||||
"Invalid Verification Algorithm.",
|
||||
"Preamble Signature Failed.",
|
||||
"Firmware Signature Failed.",
|
||||
"Wrong Firmware Magic.",
|
||||
"Invalid Firmware Header Checksum.",
|
||||
"Firmware Signing Key Rollback.",
|
||||
"Firmware Version Rollback."
|
||||
};
|
||||
|
||||
int VerifyFirmwareHeader(const uint8_t* root_key_blob,
|
||||
const uint8_t* header_blob,
|
||||
int* algorithm,
|
||||
int* header_len) {
|
||||
int firmware_sign_key_len;
|
||||
int root_key_len;
|
||||
uint16_t hlen, algo;
|
||||
uint8_t* header_checksum = NULL;
|
||||
|
||||
/* Base Offset for the header_checksum field. Actual offset is
|
||||
* this + firmware_sign_key_len. */
|
||||
int base_header_checksum_offset = (FIELD_LEN(header_len) +
|
||||
FIELD_LEN(firmware_sign_algorithm) +
|
||||
FIELD_LEN(firmware_key_version));
|
||||
|
||||
|
||||
root_key_len = RSAProcessedKeySize(ROOT_SIGNATURE_ALGORITHM);
|
||||
Memcpy(&hlen, header_blob, sizeof(hlen));
|
||||
Memcpy(&algo,
|
||||
header_blob + FIELD_LEN(firmware_sign_algorithm),
|
||||
sizeof(algo));
|
||||
if (algo >= kNumAlgorithms)
|
||||
return VERIFY_FIRMWARE_INVALID_ALGORITHM;
|
||||
*algorithm = (int) algo;
|
||||
firmware_sign_key_len = RSAProcessedKeySize(*algorithm);
|
||||
|
||||
/* Verify that header len is correct. */
|
||||
if (hlen != (base_header_checksum_offset +
|
||||
firmware_sign_key_len +
|
||||
FIELD_LEN(header_checksum)))
|
||||
return VERIFY_FIRMWARE_INVALID_IMAGE;
|
||||
|
||||
*header_len = (int) hlen;
|
||||
|
||||
/* Verify if the hash of the header is correct. */
|
||||
header_checksum = DigestBuf(header_blob,
|
||||
*header_len - FIELD_LEN(header_checksum),
|
||||
SHA512_DIGEST_ALGORITHM);
|
||||
if (SafeMemcmp(header_checksum,
|
||||
header_blob + (base_header_checksum_offset +
|
||||
firmware_sign_key_len),
|
||||
FIELD_LEN(header_checksum))) {
|
||||
Free(header_checksum);
|
||||
return VERIFY_FIRMWARE_WRONG_HEADER_CHECKSUM;
|
||||
}
|
||||
Free(header_checksum);
|
||||
|
||||
/* Root key signature on the firmware signing key is always checked
|
||||
* irrespective of dev mode. */
|
||||
if (!RSAVerifyBinary_f(root_key_blob, NULL, /* Key to use */
|
||||
header_blob, /* Data to verify */
|
||||
*header_len, /* Length of data */
|
||||
header_blob + *header_len, /* Expected Signature */
|
||||
ROOT_SIGNATURE_ALGORITHM))
|
||||
return VERIFY_FIRMWARE_ROOT_SIGNATURE_FAILED;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int VerifyFirmwarePreamble(RSAPublicKey* firmware_sign_key,
|
||||
const uint8_t* preamble_blob,
|
||||
int algorithm,
|
||||
uint64_t* firmware_len) {
|
||||
uint64_t len;
|
||||
int preamble_len;
|
||||
uint16_t firmware_version;
|
||||
|
||||
Memcpy(&firmware_version, preamble_blob, sizeof(firmware_version));
|
||||
|
||||
preamble_len = (FIELD_LEN(firmware_version) +
|
||||
FIELD_LEN(firmware_len) +
|
||||
FIELD_LEN(preamble));
|
||||
if (!RSAVerifyBinary_f(NULL, firmware_sign_key, /* Key to use */
|
||||
preamble_blob, /* Data to verify */
|
||||
preamble_len, /* Length of data */
|
||||
preamble_blob + preamble_len, /* Expected Signature */
|
||||
algorithm))
|
||||
return VERIFY_FIRMWARE_PREAMBLE_SIGNATURE_FAILED;
|
||||
|
||||
Memcpy(&len, preamble_blob + FIELD_LEN(firmware_version),
|
||||
sizeof(len));
|
||||
*firmware_len = len;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int VerifyFirmwareData(RSAPublicKey* firmware_sign_key,
|
||||
const uint8_t* preamble_start,
|
||||
const uint8_t* firmware_data_start,
|
||||
uint64_t firmware_len,
|
||||
int algorithm) {
|
||||
int signature_len = siglen_map[algorithm];
|
||||
uint8_t* digest;
|
||||
DigestContext ctx;
|
||||
|
||||
/* Since the firmware signature is over the preamble and the firmware data,
|
||||
* which does not form a contiguous region of memory, we calculate the
|
||||
* message digest ourselves. */
|
||||
DigestInit(&ctx, algorithm);
|
||||
DigestUpdate(&ctx, preamble_start,
|
||||
(FIELD_LEN(firmware_version) +
|
||||
FIELD_LEN(firmware_len) +
|
||||
FIELD_LEN(preamble)));
|
||||
DigestUpdate(&ctx, firmware_data_start + signature_len, firmware_len);
|
||||
digest = DigestFinal(&ctx);
|
||||
if (!RSAVerifyBinaryWithDigest_f(
|
||||
NULL, firmware_sign_key, /* Key to use. */
|
||||
digest, /* Digest of the data to verify. */
|
||||
firmware_data_start, /* Expected Signature */
|
||||
algorithm)) {
|
||||
Free(digest);
|
||||
return VERIFY_FIRMWARE_SIGNATURE_FAILED;
|
||||
}
|
||||
Free(digest);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int VerifyFirmware(const uint8_t* root_key_blob,
|
||||
const uint8_t* firmware_blob) {
|
||||
int error_code = 0;
|
||||
int algorithm; /* Signing key algorithm. */
|
||||
RSAPublicKey* firmware_sign_key = NULL;
|
||||
int firmware_sign_key_len, signature_len, header_len;
|
||||
uint64_t firmware_len;
|
||||
const uint8_t* header_ptr = NULL; /* Pointer to header. */
|
||||
const uint8_t* firmware_sign_key_ptr = NULL; /* Pointer to signing key. */
|
||||
const uint8_t* preamble_ptr = NULL; /* Pointer to preamble block. */
|
||||
const uint8_t* firmware_ptr = NULL; /* Pointer to firmware signature/data. */
|
||||
|
||||
/* Note: All the offset calculations are based on struct FirmwareImage which
|
||||
* is defined in include/firmware_image.h. */
|
||||
|
||||
/* Compare magic bytes. */
|
||||
if (SafeMemcmp(firmware_blob, FIRMWARE_MAGIC, FIRMWARE_MAGIC_SIZE))
|
||||
return VERIFY_FIRMWARE_WRONG_MAGIC;
|
||||
header_ptr = firmware_blob + FIRMWARE_MAGIC_SIZE;
|
||||
|
||||
/* Only continue if header verification succeeds. */
|
||||
if ((error_code = VerifyFirmwareHeader(root_key_blob, header_ptr,
|
||||
&algorithm, &header_len)))
|
||||
return error_code; /* AKA jump to revovery. */
|
||||
|
||||
/* Parse signing key into RSAPublicKey structure since it is required multiple
|
||||
* times. */
|
||||
firmware_sign_key_len = RSAProcessedKeySize(algorithm);
|
||||
firmware_sign_key_ptr = header_ptr + (FIELD_LEN(header_len) +
|
||||
FIELD_LEN(firmware_sign_algorithm) +
|
||||
FIELD_LEN(firmware_key_version));
|
||||
firmware_sign_key = RSAPublicKeyFromBuf(firmware_sign_key_ptr,
|
||||
firmware_sign_key_len);
|
||||
signature_len = siglen_map[algorithm];
|
||||
|
||||
/* Only continue if preamble verification succeeds. */
|
||||
preamble_ptr = (header_ptr + header_len +
|
||||
FIELD_LEN(firmware_key_signature));
|
||||
if ((error_code = VerifyFirmwarePreamble(firmware_sign_key, preamble_ptr,
|
||||
algorithm,
|
||||
&firmware_len))) {
|
||||
RSAPublicKeyFree(firmware_sign_key);
|
||||
debug("Couldn't verify Firmware preamble.\n");
|
||||
return error_code; /* AKA jump to recovery. */
|
||||
}
|
||||
/* Only continue if firmware data verification succeeds. */
|
||||
firmware_ptr = (preamble_ptr +
|
||||
(FIELD_LEN(firmware_version) + /* Skip the preamble. */
|
||||
FIELD_LEN(firmware_len) +
|
||||
FIELD_LEN(preamble)) +
|
||||
signature_len);
|
||||
|
||||
if ((error_code = VerifyFirmwareData(firmware_sign_key, preamble_ptr,
|
||||
firmware_ptr,
|
||||
firmware_len,
|
||||
algorithm))) {
|
||||
RSAPublicKeyFree(firmware_sign_key);
|
||||
debug("Couldn't verify Firmware data.\n");
|
||||
return error_code; /* AKA jump to recovery. */
|
||||
}
|
||||
|
||||
RSAPublicKeyFree(firmware_sign_key);
|
||||
return 0; /* Success! */
|
||||
}
|
||||
|
||||
uint32_t GetLogicalFirmwareVersion(uint8_t* firmware_blob) {
|
||||
uint16_t firmware_key_version;
|
||||
uint16_t firmware_version;
|
||||
uint16_t firmware_sign_algorithm;
|
||||
int firmware_sign_key_len;
|
||||
Memcpy(&firmware_sign_algorithm,
|
||||
firmware_blob + (FIELD_LEN(magic) + /* Offset to field. */
|
||||
FIELD_LEN(header_len)),
|
||||
sizeof(firmware_sign_algorithm));
|
||||
Memcpy(&firmware_key_version,
|
||||
firmware_blob + (FIELD_LEN(magic) + /* Offset to field. */
|
||||
FIELD_LEN(header_len) +
|
||||
FIELD_LEN(firmware_sign_algorithm)),
|
||||
sizeof(firmware_key_version));
|
||||
if (firmware_sign_algorithm >= kNumAlgorithms)
|
||||
return 0;
|
||||
firmware_sign_key_len = RSAProcessedKeySize(firmware_sign_algorithm);
|
||||
Memcpy(&firmware_version,
|
||||
firmware_blob + (FIELD_LEN(magic) + /* Offset to field. */
|
||||
FIELD_LEN(header_len) +
|
||||
FIELD_LEN(firmware_key_version) +
|
||||
firmware_sign_key_len +
|
||||
FIELD_LEN(header_checksum) +
|
||||
FIELD_LEN(firmware_key_signature)),
|
||||
sizeof(firmware_version));
|
||||
return CombineUint16Pair(firmware_key_version, firmware_version);
|
||||
}
|
||||
|
||||
int VerifyFirmwareDriver_f(uint8_t* root_key_blob,
|
||||
uint8_t* firmwareA,
|
||||
uint8_t* firmwareB) {
|
||||
/* Contains the logical firmware version (32-bit) which is calculated as
|
||||
* (firmware_key_version << 16 | firmware_version) where
|
||||
* [firmware_key_version] [firmware_version] are both 16-bit.
|
||||
*/
|
||||
uint32_t firmwareA_lversion, firmwareB_lversion;
|
||||
uint8_t firmwareA_is_verified = 0; /* Whether firmwareA verify succeeded. */
|
||||
uint32_t min_lversion; /* Minimum of firmware A and firmware lversion. */
|
||||
uint32_t stored_lversion; /* Stored logical version in the TPM. */
|
||||
|
||||
/* Initialize the TPM since we'll be reading the rollback indices. */
|
||||
SetupTPM();
|
||||
|
||||
/* We get the key versions by reading directly from the image blobs without
|
||||
* any additional (expensive) sanity checking on the blob since it's faster to
|
||||
* outright reject a firmware with an older firmware key version. A malformed
|
||||
* or corrupted firmware blob will still fail when VerifyFirmware() is called
|
||||
* on it.
|
||||
*/
|
||||
firmwareA_lversion = GetLogicalFirmwareVersion(firmwareA);
|
||||
firmwareB_lversion = GetLogicalFirmwareVersion(firmwareB);
|
||||
min_lversion = Min(firmwareA_lversion, firmwareB_lversion);
|
||||
stored_lversion = CombineUint16Pair(GetStoredVersion(FIRMWARE_KEY_VERSION),
|
||||
GetStoredVersion(FIRMWARE_VERSION));
|
||||
/* Always try FirmwareA first. */
|
||||
if (VERIFY_FIRMWARE_SUCCESS == VerifyFirmware(root_key_blob, firmwareA))
|
||||
firmwareA_is_verified = 1;
|
||||
if (firmwareA_is_verified && (stored_lversion < firmwareA_lversion)) {
|
||||
/* Stored version may need to be updated but only if FirmwareB
|
||||
* is successfully verified and has a logical version greater than
|
||||
* the stored logical version. */
|
||||
if (stored_lversion < firmwareB_lversion) {
|
||||
if (VERIFY_FIRMWARE_SUCCESS == VerifyFirmware(root_key_blob, firmwareB)) {
|
||||
WriteStoredVersion(FIRMWARE_KEY_VERSION,
|
||||
(uint16_t) (min_lversion >> 16));
|
||||
WriteStoredVersion(FIRMWARE_VERSION,
|
||||
(uint16_t) (min_lversion & 0x00FFFF));
|
||||
stored_lversion = min_lversion; /* Update stored version as it's used
|
||||
* later. */
|
||||
}
|
||||
}
|
||||
}
|
||||
/* Lock Firmware TPM rollback indices from further writes. */
|
||||
/* TODO(gauravsh): Figure out if these can be combined into one
|
||||
* 32-bit location since we seem to always use them together. This can help
|
||||
* us minimize the number of NVRAM writes/locks (which are limited over flash
|
||||
* memory lifetimes.
|
||||
*/
|
||||
LockStoredVersion(FIRMWARE_KEY_VERSION);
|
||||
LockStoredVersion(FIRMWARE_VERSION);
|
||||
|
||||
/* Determine which firmware (if any) to jump to.
|
||||
*
|
||||
* We always attempt to jump to FirmwareA first. If verification of FirmwareA
|
||||
* fails, we try FirmwareB. In all cases, if the firmware successfully
|
||||
* verified but is a rollback, we jump to recovery.
|
||||
*
|
||||
* Note: This means that if FirmwareA verified successfully and is a
|
||||
* rollback, then no attempt is made to check FirmwareB. We still jump to
|
||||
* recovery. FirmwareB is only used as a backup in case FirmwareA gets
|
||||
* corrupted. Since newer firmware updates are always written to A,
|
||||
* the case where firmware A is verified but a rollback should not occur in
|
||||
* normal operation.
|
||||
*/
|
||||
if (firmwareA_is_verified) {
|
||||
if (stored_lversion <= firmwareA_lversion)
|
||||
return BOOT_FIRMWARE_A_CONTINUE;
|
||||
} else {
|
||||
/* If FirmwareA was not valid, then we skipped over the
|
||||
* check to update the rollback indices and a Verify of FirmwareB wasn't
|
||||
* attempted.
|
||||
* If FirmwareB is not a rollback, then we attempt to do the verification.
|
||||
*/
|
||||
if (stored_lversion <= firmwareB_lversion &&
|
||||
(VERIFY_FIRMWARE_SUCCESS == VerifyFirmware(root_key_blob, firmwareB)))
|
||||
return BOOT_FIRMWARE_B_CONTINUE;
|
||||
}
|
||||
/* D'oh: No bootable firmware. */
|
||||
return BOOT_FIRMWARE_RECOVERY_CONTINUE;
|
||||
}
|
||||
@@ -3,6 +3,7 @@
|
||||
* found in the LICENSE file.
|
||||
*
|
||||
* Functions for generating and manipulating a verified boot kernel image.
|
||||
* (Userland portion)
|
||||
*/
|
||||
|
||||
#include "kernel_image.h"
|
||||
@@ -75,7 +76,7 @@ KernelImage* ReadKernelImage(const char* input_file) {
|
||||
StatefulMemcpy(&st, &image->magic, KERNEL_MAGIC_SIZE);
|
||||
|
||||
if (SafeMemcmp(image->magic, KERNEL_MAGIC, KERNEL_MAGIC_SIZE)) {
|
||||
fprintf(stderr, "Wrong Kernel Magic.\n");
|
||||
debug("Wrong Kernel Magic.\n");
|
||||
Free(kernel_buf);
|
||||
return NULL;
|
||||
}
|
||||
@@ -107,7 +108,7 @@ KernelImage* ReadKernelImage(const char* input_file) {
|
||||
/* Check whether key header length is correct. */
|
||||
header_len = GetKernelHeaderLen(image);
|
||||
if (header_len != image->header_len) {
|
||||
fprintf(stderr, "Header length mismatch. Got: %d, Expected: %d\n",
|
||||
debug("Header length mismatch. Got: %d, Expected: %d\n",
|
||||
image->header_len, header_len);
|
||||
Free(kernel_buf);
|
||||
return NULL;
|
||||
@@ -124,7 +125,7 @@ KernelImage* ReadKernelImage(const char* input_file) {
|
||||
CalculateKernelHeaderChecksum(image, header_checksum);
|
||||
if (SafeMemcmp(header_checksum, image->header_checksum,
|
||||
FIELD_LEN(header_checksum))) {
|
||||
fprintf(stderr, "Invalid kernel header checksum!\n");
|
||||
debug("Invalid kernel header checksum!\n");
|
||||
Free(kernel_buf);
|
||||
return NULL;
|
||||
}
|
||||
@@ -307,17 +308,17 @@ int WriteKernelImage(const char* input_file,
|
||||
if (!image)
|
||||
return 0;
|
||||
if (-1 == (fd = creat(input_file, S_IRWXU))) {
|
||||
fprintf(stderr, "Couldn't open file for writing kernel image: %s\n",
|
||||
debug("Couldn't open file for writing kernel image: %s\n",
|
||||
input_file);
|
||||
return 0;
|
||||
}
|
||||
kernel_blob = GetKernelBlob(image, &blob_len);
|
||||
if (!kernel_blob) {
|
||||
fprintf(stderr, "Couldn't create kernel blob from KernelImage.\n");
|
||||
debug("Couldn't create kernel blob from KernelImage.\n");
|
||||
return 0;
|
||||
}
|
||||
if (blob_len != write(fd, kernel_blob, blob_len)) {
|
||||
fprintf(stderr, "Couldn't write Kernel Image to file: %s\n",
|
||||
debug("Couldn't write Kernel Image to file: %s\n",
|
||||
input_file);
|
||||
|
||||
Free(kernel_blob);
|
||||
@@ -361,212 +362,6 @@ void PrintKernelImage(const KernelImage* image) {
|
||||
/* TODO(gauravsh): Output kernel signature here? */
|
||||
}
|
||||
|
||||
char* kVerifyKernelErrors[VERIFY_KERNEL_MAX] = {
|
||||
"Success.",
|
||||
"Invalid Image.",
|
||||
"Kernel Key Signature Failed.",
|
||||
"Invalid Kernel Verification Algorithm.",
|
||||
"Config Signature Failed.",
|
||||
"Kernel Signature Failed.",
|
||||
"Wrong Kernel Magic.",
|
||||
};
|
||||
|
||||
int VerifyKernelHeader(const uint8_t* firmware_key_blob,
|
||||
const uint8_t* header_blob,
|
||||
const int dev_mode,
|
||||
int* firmware_algorithm,
|
||||
int* kernel_algorithm,
|
||||
int* kernel_header_len) {
|
||||
int kernel_sign_key_len;
|
||||
int firmware_sign_key_len;
|
||||
uint16_t header_version, header_len;
|
||||
uint16_t firmware_sign_algorithm, kernel_sign_algorithm;
|
||||
uint8_t* header_checksum = NULL;
|
||||
|
||||
/* Base Offset for the header_checksum field. Actual offset is
|
||||
* this + kernel_sign_key_len. */
|
||||
int base_header_checksum_offset = (FIELD_LEN(header_version) +
|
||||
FIELD_LEN(header_len) +
|
||||
FIELD_LEN(firmware_sign_algorithm) +
|
||||
FIELD_LEN(kernel_sign_algorithm) +
|
||||
FIELD_LEN(kernel_key_version));
|
||||
|
||||
Memcpy(&header_version, header_blob, sizeof(header_version));
|
||||
Memcpy(&header_len, header_blob + FIELD_LEN(header_version),
|
||||
sizeof(header_len));
|
||||
Memcpy(&firmware_sign_algorithm,
|
||||
header_blob + (FIELD_LEN(header_version) +
|
||||
FIELD_LEN(header_len)),
|
||||
sizeof(firmware_sign_algorithm));
|
||||
Memcpy(&kernel_sign_algorithm,
|
||||
header_blob + (FIELD_LEN(header_version) +
|
||||
FIELD_LEN(header_len) +
|
||||
FIELD_LEN(firmware_sign_algorithm)),
|
||||
sizeof(kernel_sign_algorithm));
|
||||
|
||||
/* TODO(gauravsh): Make this return two different error types depending
|
||||
* on whether the firmware or kernel signing algorithm is invalid. */
|
||||
if (firmware_sign_algorithm >= kNumAlgorithms)
|
||||
return VERIFY_KERNEL_INVALID_ALGORITHM;
|
||||
if (kernel_sign_algorithm >= kNumAlgorithms)
|
||||
return VERIFY_KERNEL_INVALID_ALGORITHM;
|
||||
|
||||
*firmware_algorithm = (int) firmware_sign_algorithm;
|
||||
*kernel_algorithm = (int) kernel_sign_algorithm;
|
||||
kernel_sign_key_len = RSAProcessedKeySize(kernel_sign_algorithm);
|
||||
firmware_sign_key_len = RSAProcessedKeySize(firmware_sign_algorithm);
|
||||
|
||||
|
||||
/* Verify if header len is correct? */
|
||||
if (header_len != (base_header_checksum_offset +
|
||||
kernel_sign_key_len +
|
||||
FIELD_LEN(header_checksum))) {
|
||||
fprintf(stderr, "VerifyKernelHeader: Header length mismatch\n");
|
||||
return VERIFY_KERNEL_INVALID_IMAGE;
|
||||
}
|
||||
*kernel_header_len = (int) header_len;
|
||||
|
||||
/* Verify if the hash of the header is correct. */
|
||||
header_checksum = DigestBuf(header_blob,
|
||||
header_len - FIELD_LEN(header_checksum),
|
||||
SHA512_DIGEST_ALGORITHM);
|
||||
if (SafeMemcmp(header_checksum,
|
||||
header_blob + (base_header_checksum_offset +
|
||||
kernel_sign_key_len),
|
||||
FIELD_LEN(header_checksum))) {
|
||||
Free(header_checksum);
|
||||
fprintf(stderr, "VerifyKernelHeader: Invalid header hash\n");
|
||||
return VERIFY_KERNEL_INVALID_IMAGE;
|
||||
}
|
||||
Free(header_checksum);
|
||||
|
||||
/* Verify kernel key signature unless we are in dev mode. */
|
||||
if (!dev_mode) {
|
||||
if (!RSAVerifyBinary_f(firmware_key_blob, NULL, /* Key to use */
|
||||
header_blob, /* Data to verify */
|
||||
header_len, /* Length of data */
|
||||
header_blob + header_len, /* Expected Signature */
|
||||
firmware_sign_algorithm))
|
||||
return VERIFY_KERNEL_KEY_SIGNATURE_FAILED;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
int VerifyKernelConfig(RSAPublicKey* kernel_sign_key,
|
||||
const uint8_t* config_blob,
|
||||
int algorithm,
|
||||
uint64_t* kernel_len) {
|
||||
uint64_t len;
|
||||
int config_len;
|
||||
config_len = GetKernelConfigLen(NULL);
|
||||
if (!RSAVerifyBinary_f(NULL, kernel_sign_key, /* Key to use */
|
||||
config_blob, /* Data to verify */
|
||||
config_len, /* Length of data */
|
||||
config_blob + config_len, /* Expected Signature */
|
||||
algorithm))
|
||||
return VERIFY_KERNEL_CONFIG_SIGNATURE_FAILED;
|
||||
|
||||
Memcpy(&len,
|
||||
config_blob + (FIELD_LEN(kernel_version) + FIELD_LEN(options.version) +
|
||||
FIELD_LEN(options.cmd_line)),
|
||||
sizeof(len));
|
||||
*kernel_len = len;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int VerifyKernelData(RSAPublicKey* kernel_sign_key,
|
||||
const uint8_t* kernel_config_start,
|
||||
const uint8_t* kernel_data_start,
|
||||
uint64_t kernel_len,
|
||||
int algorithm) {
|
||||
int signature_len = siglen_map[algorithm];
|
||||
uint8_t* digest;
|
||||
DigestContext ctx;
|
||||
|
||||
/* Since the kernel signature is computed over the kernel version, options
|
||||
* and data, which does not form a contiguous region of memory, we calculate
|
||||
* the message digest ourselves. */
|
||||
DigestInit(&ctx, algorithm);
|
||||
DigestUpdate(&ctx, kernel_config_start, GetKernelConfigLen());
|
||||
DigestUpdate(&ctx, kernel_data_start + signature_len, kernel_len);
|
||||
digest = DigestFinal(&ctx);
|
||||
if (!RSAVerifyBinaryWithDigest_f(
|
||||
NULL, kernel_sign_key, /* Key to use. */
|
||||
digest, /* Digest of the data to verify. */
|
||||
kernel_data_start, /* Expected Signature */
|
||||
algorithm)) {
|
||||
Free(digest);
|
||||
return VERIFY_KERNEL_SIGNATURE_FAILED;
|
||||
}
|
||||
Free(digest);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int VerifyKernel(const uint8_t* firmware_key_blob,
|
||||
const uint8_t* kernel_blob,
|
||||
const int dev_mode) {
|
||||
int error_code;
|
||||
int firmware_sign_algorithm; /* Firmware signing key algorithm. */
|
||||
int kernel_sign_algorithm; /* Kernel Signing key algorithm. */
|
||||
RSAPublicKey* kernel_sign_key;
|
||||
int kernel_sign_key_len, kernel_key_signature_len, kernel_signature_len,
|
||||
header_len;
|
||||
uint64_t kernel_len;
|
||||
const uint8_t* header_ptr; /* Pointer to header. */
|
||||
const uint8_t* kernel_sign_key_ptr; /* Pointer to signing key. */
|
||||
const uint8_t* config_ptr; /* Pointer to kernel config block. */
|
||||
const uint8_t* kernel_ptr; /* Pointer to kernel signature/data. */
|
||||
|
||||
/* Note: All the offset calculations are based on struct FirmwareImage which
|
||||
* is defined in include/firmware_image.h. */
|
||||
|
||||
/* Compare magic bytes. */
|
||||
if (SafeMemcmp(kernel_blob, KERNEL_MAGIC, KERNEL_MAGIC_SIZE))
|
||||
return VERIFY_KERNEL_WRONG_MAGIC;
|
||||
header_ptr = kernel_blob + KERNEL_MAGIC_SIZE;
|
||||
|
||||
/* Only continue if header verification succeeds. */
|
||||
if ((error_code = VerifyKernelHeader(firmware_key_blob, header_ptr, dev_mode,
|
||||
&firmware_sign_algorithm,
|
||||
&kernel_sign_algorithm, &header_len))) {
|
||||
fprintf(stderr, "VerifyKernel: Kernel header verification failed.\n");
|
||||
return error_code; /* AKA jump to recovery. */
|
||||
}
|
||||
/* Parse signing key into RSAPublicKey structure since it is required multiple
|
||||
* times. */
|
||||
kernel_sign_key_len = RSAProcessedKeySize(kernel_sign_algorithm);
|
||||
kernel_sign_key_ptr = header_ptr + (FIELD_LEN(header_version) +
|
||||
FIELD_LEN(header_len) +
|
||||
FIELD_LEN(firmware_sign_algorithm) +
|
||||
FIELD_LEN(kernel_sign_algorithm) +
|
||||
FIELD_LEN(kernel_key_version));
|
||||
kernel_sign_key = RSAPublicKeyFromBuf(kernel_sign_key_ptr,
|
||||
kernel_sign_key_len);
|
||||
kernel_signature_len = siglen_map[kernel_sign_algorithm];
|
||||
kernel_key_signature_len = siglen_map[firmware_sign_algorithm];
|
||||
|
||||
/* Only continue if config verification succeeds. */
|
||||
config_ptr = (header_ptr + header_len + kernel_key_signature_len);
|
||||
if ((error_code = VerifyKernelConfig(kernel_sign_key, config_ptr,
|
||||
kernel_sign_algorithm,
|
||||
&kernel_len))) {
|
||||
RSAPublicKeyFree(kernel_sign_key);
|
||||
return error_code; /* AKA jump to recovery. */
|
||||
}
|
||||
/* Only continue if kernel data verification succeeds. */
|
||||
kernel_ptr = (config_ptr +
|
||||
GetKernelConfigLen() + /* Skip config block/signature. */
|
||||
kernel_signature_len);
|
||||
|
||||
if ((error_code = VerifyKernelData(kernel_sign_key, config_ptr, kernel_ptr,
|
||||
kernel_len,
|
||||
kernel_sign_algorithm))) {
|
||||
RSAPublicKeyFree(kernel_sign_key);
|
||||
return error_code; /* AKA jump to recovery. */
|
||||
}
|
||||
RSAPublicKeyFree(kernel_sign_key);
|
||||
return 0; /* Success! */
|
||||
}
|
||||
|
||||
int VerifyKernelImage(const RSAPublicKey* firmware_key,
|
||||
const KernelImage* image,
|
||||
@@ -617,7 +412,7 @@ int VerifyKernelImage(const RSAPublicKey* firmware_key,
|
||||
siglen_map[image->firmware_sign_algorithm],
|
||||
image->firmware_sign_algorithm,
|
||||
header_digest)) {
|
||||
fprintf(stderr, "VerifyKernelImage(): Key signature check failed.\n");
|
||||
debug("VerifyKernelImage(): Key signature check failed.\n");
|
||||
error_code = VERIFY_KERNEL_KEY_SIGNATURE_FAILED;
|
||||
goto verify_failure;
|
||||
}
|
||||
@@ -723,7 +518,7 @@ int AddKernelSignature(KernelImage* image,
|
||||
GetKernelConfigLen(),
|
||||
kernel_signing_key_file,
|
||||
image->kernel_sign_algorithm))) {
|
||||
fprintf(stderr, "Could not compute signature on the kernel config.\n");
|
||||
debug("Could not compute signature on the kernel config.\n");
|
||||
Free(config_blob);
|
||||
return 0;
|
||||
}
|
||||
@@ -745,7 +540,7 @@ int AddKernelSignature(KernelImage* image,
|
||||
image->kernel_sign_algorithm))) {
|
||||
Free(config_blob);
|
||||
Free(kernel_buf);
|
||||
fprintf(stderr, "Could not compute signature on the kernel.\n");
|
||||
debug("Could not compute signature on the kernel.\n");
|
||||
return 0;
|
||||
}
|
||||
image->kernel_signature = (uint8_t*) Malloc(signature_len);
|
||||
@@ -756,146 +551,8 @@ int AddKernelSignature(KernelImage* image,
|
||||
return 1;
|
||||
}
|
||||
|
||||
uint32_t GetLogicalKernelVersion(uint8_t* kernel_blob) {
|
||||
uint8_t* kernel_ptr;
|
||||
uint16_t kernel_key_version;
|
||||
uint16_t kernel_version;
|
||||
uint16_t firmware_sign_algorithm;
|
||||
uint16_t kernel_sign_algorithm;
|
||||
int kernel_key_signature_len;
|
||||
int kernel_sign_key_len;
|
||||
kernel_ptr = kernel_blob + (FIELD_LEN(magic) +
|
||||
FIELD_LEN(header_version) +
|
||||
FIELD_LEN(header_len));
|
||||
Memcpy(&firmware_sign_algorithm, kernel_ptr, sizeof(firmware_sign_algorithm));
|
||||
kernel_ptr += FIELD_LEN(firmware_sign_algorithm);
|
||||
Memcpy(&kernel_sign_algorithm, kernel_ptr, sizeof(kernel_sign_algorithm));
|
||||
kernel_ptr += FIELD_LEN(kernel_sign_algorithm);
|
||||
Memcpy(&kernel_key_version, kernel_ptr, sizeof(kernel_key_version));
|
||||
|
||||
if (firmware_sign_algorithm >= kNumAlgorithms)
|
||||
return 0;
|
||||
if (kernel_sign_algorithm >= kNumAlgorithms)
|
||||
return 0;
|
||||
kernel_key_signature_len = siglen_map[firmware_sign_algorithm];
|
||||
kernel_sign_key_len = RSAProcessedKeySize(kernel_sign_algorithm);
|
||||
kernel_ptr += (FIELD_LEN(kernel_key_version) +
|
||||
kernel_sign_key_len +
|
||||
FIELD_LEN(header_checksum) +
|
||||
kernel_key_signature_len);
|
||||
Memcpy(&kernel_version, kernel_ptr, sizeof(kernel_version));
|
||||
return CombineUint16Pair(kernel_key_version, kernel_version);
|
||||
}
|
||||
|
||||
void PrintKernelEntry(kernel_entry* entry) {
|
||||
fprintf(stderr, "Boot Priority = %d\n", entry->boot_priority);
|
||||
fprintf(stderr, "Boot Tries Remaining = %d\n", entry->boot_tries_remaining);
|
||||
fprintf(stderr, "Boot Success Flag = %d\n", entry->boot_success_flag);
|
||||
}
|
||||
|
||||
int VerifyKernelDriver_f(uint8_t* firmware_key_blob,
|
||||
kernel_entry* kernelA,
|
||||
kernel_entry* kernelB,
|
||||
int dev_mode) {
|
||||
int i;
|
||||
/* Contains the logical kernel version (32-bit) which is calculated as
|
||||
* (kernel_key_version << 16 | kernel_version) where
|
||||
* [kernel_key_version], [firmware_version] are both 16-bit.
|
||||
*/
|
||||
uint32_t kernelA_lversion, kernelB_lversion;
|
||||
uint32_t min_lversion; /* Minimum of kernel A and kernel B lversion. */
|
||||
uint32_t stored_lversion; /* Stored logical version in the TPM. */
|
||||
kernel_entry* try_kernel[2]; /* Kernel in try order. */
|
||||
int try_kernel_which[2]; /* Which corresponding kernel in the try order */
|
||||
uint32_t try_kernel_lversion[2]; /* Their logical versions. */
|
||||
|
||||
/* [kernel_to_boot] will eventually contain the boot path to follow
|
||||
* and is returned to the caller. Initially, we set it to recovery. If
|
||||
* a valid bootable kernel is found, it will be set to that. */
|
||||
int kernel_to_boot = BOOT_KERNEL_RECOVERY_CONTINUE;
|
||||
|
||||
|
||||
/* The TPM must already have be initialized, so no need to call SetupTPM(). */
|
||||
|
||||
/* We get the key versions by reading directly from the image blobs without
|
||||
* any additional (expensive) sanity checking on the blob since it's faster to
|
||||
* outright reject a kernel with an older kernel key version. A malformed
|
||||
* or corrupted kernel blob will still fail when VerifyKernel() is called
|
||||
* on it.
|
||||
*/
|
||||
kernelA_lversion = GetLogicalKernelVersion(kernelA->kernel_blob);
|
||||
kernelB_lversion = GetLogicalKernelVersion(kernelB->kernel_blob);
|
||||
min_lversion = Min(kernelA_lversion, kernelB_lversion);
|
||||
stored_lversion = CombineUint16Pair(GetStoredVersion(KERNEL_KEY_VERSION),
|
||||
GetStoredVersion(KERNEL_VERSION));
|
||||
|
||||
/* TODO(gauravsh): The kernel entries kernelA and kernelB come from the
|
||||
* partition table - verify its signature/checksum before proceeding
|
||||
* further. */
|
||||
|
||||
/* The logic for deciding which kernel to boot from is taken from the
|
||||
* the Chromium OS Drive Map design document.
|
||||
*
|
||||
* We went to consider the kernels in their according to their boot
|
||||
* priority attribute value.
|
||||
*/
|
||||
|
||||
if (kernelA->boot_priority >= kernelB->boot_priority) {
|
||||
try_kernel[0] = kernelA;
|
||||
try_kernel_which[0] = BOOT_KERNEL_A_CONTINUE;
|
||||
try_kernel_lversion[0] = kernelA_lversion;
|
||||
try_kernel[1] = kernelB;
|
||||
try_kernel_which[1] = BOOT_KERNEL_B_CONTINUE;
|
||||
try_kernel_lversion[1] = kernelB_lversion;
|
||||
} else {
|
||||
try_kernel[0] = kernelB;
|
||||
try_kernel_which[0] = BOOT_KERNEL_B_CONTINUE;
|
||||
try_kernel_lversion[0] = kernelB_lversion;
|
||||
try_kernel[1] = kernelA;
|
||||
try_kernel_which[1] = BOOT_KERNEL_A_CONTINUE;
|
||||
try_kernel_lversion[1] = kernelA_lversion;
|
||||
}
|
||||
|
||||
/* TODO(gauravsh): Changes to boot_tries_remaining and boot_priority
|
||||
* below should be propagated to partition table. This will be added
|
||||
* once the firmware parition table parsing code is in. */
|
||||
for (i = 0; i < 2; i++) {
|
||||
if ((try_kernel[i]->boot_success_flag ||
|
||||
try_kernel[i]->boot_tries_remaining) &&
|
||||
(VERIFY_KERNEL_SUCCESS == VerifyKernel(firmware_key_blob,
|
||||
try_kernel[i]->kernel_blob,
|
||||
dev_mode))) {
|
||||
if (try_kernel[i]->boot_tries_remaining > 0)
|
||||
try_kernel[i]->boot_tries_remaining--;
|
||||
if (stored_lversion > try_kernel_lversion[i])
|
||||
continue; /* Rollback: I am afraid I can't let you do that Dave. */
|
||||
if (i == 0 && (stored_lversion < try_kernel_lversion[1])) {
|
||||
/* The higher priority kernel is valid and bootable, See if we
|
||||
* need to update the stored version for rollback prevention. */
|
||||
if (VERIFY_KERNEL_SUCCESS == VerifyKernel(firmware_key_blob,
|
||||
try_kernel[1]->kernel_blob,
|
||||
dev_mode)) {
|
||||
WriteStoredVersion(KERNEL_KEY_VERSION,
|
||||
(uint16_t) (min_lversion >> 16));
|
||||
WriteStoredVersion(KERNEL_VERSION,
|
||||
(uint16_t) (min_lversion & 0xFFFF));
|
||||
stored_lversion = min_lversion; /* Update stored version as it's
|
||||
* used later. */
|
||||
}
|
||||
}
|
||||
kernel_to_boot = try_kernel_which[i];
|
||||
break; /* We found a valid kernel. */
|
||||
}
|
||||
try_kernel[i]->boot_priority = 0;
|
||||
} /* for loop. */
|
||||
|
||||
/* Lock Kernel TPM rollback indices from further writes.
|
||||
* TODO(gauravsh): Figure out if these can be combined into one
|
||||
* 32-bit location since we seem to always use them together. This can help
|
||||
* us minimize the number of NVRAM writes/locks (which are limited over flash
|
||||
* memory lifetimes.
|
||||
*/
|
||||
LockStoredVersion(KERNEL_KEY_VERSION);
|
||||
LockStoredVersion(KERNEL_VERSION);
|
||||
return kernel_to_boot;
|
||||
debug("Boot Priority = %d\n", entry->boot_priority);
|
||||
debug("Boot Tries Remaining = %d\n", entry->boot_tries_remaining);
|
||||
debug("Boot Success Flag = %d\n", entry->boot_success_flag);
|
||||
}
|
||||
|
||||
368
utils/kernel_image_fw.c
Normal file
368
utils/kernel_image_fw.c
Normal file
@@ -0,0 +1,368 @@
|
||||
/* Copyright (c) 2010 The Chromium OS Authors. All rights reserved.
|
||||
* Use of this source code is governed by a BSD-style license that can be
|
||||
* found in the LICENSE file.
|
||||
*
|
||||
* Functions for verifying a verified boot kernel image.
|
||||
* (Firmware portion)
|
||||
*/
|
||||
|
||||
#include "kernel_image_fw.h"
|
||||
|
||||
#include "padding.h"
|
||||
#include "rollback_index.h"
|
||||
#include "rsa_utility.h"
|
||||
#include "sha_utility.h"
|
||||
#include "utility.h"
|
||||
|
||||
/* Macro to determine the size of a field structure in the KernelImage
|
||||
* structure. */
|
||||
#define FIELD_LEN(field) (sizeof(((KernelImage*)0)->field))
|
||||
#define KERNEL_CONFIG_FIELD_LEN (FIELD_LEN(kernel_version) + FIELD_LEN(options.version) + \
|
||||
FIELD_LEN(options.cmd_line) + \
|
||||
FIELD_LEN(options.kernel_len) + \
|
||||
FIELD_LEN(options.kernel_load_addr) + \
|
||||
FIELD_LEN(options.kernel_entry_addr))
|
||||
|
||||
char* kVerifyKernelErrors[VERIFY_KERNEL_MAX] = {
|
||||
"Success.",
|
||||
"Invalid Image.",
|
||||
"Kernel Key Signature Failed.",
|
||||
"Invalid Kernel Verification Algorithm.",
|
||||
"Config Signature Failed.",
|
||||
"Kernel Signature Failed.",
|
||||
"Wrong Kernel Magic.",
|
||||
};
|
||||
|
||||
int VerifyKernelHeader(const uint8_t* firmware_key_blob,
|
||||
const uint8_t* header_blob,
|
||||
const int dev_mode,
|
||||
int* firmware_algorithm,
|
||||
int* kernel_algorithm,
|
||||
int* kernel_header_len) {
|
||||
int kernel_sign_key_len;
|
||||
int firmware_sign_key_len;
|
||||
uint16_t header_version, header_len;
|
||||
uint16_t firmware_sign_algorithm, kernel_sign_algorithm;
|
||||
uint8_t* header_checksum = NULL;
|
||||
|
||||
/* Base Offset for the header_checksum field. Actual offset is
|
||||
* this + kernel_sign_key_len. */
|
||||
int base_header_checksum_offset = (FIELD_LEN(header_version) +
|
||||
FIELD_LEN(header_len) +
|
||||
FIELD_LEN(firmware_sign_algorithm) +
|
||||
FIELD_LEN(kernel_sign_algorithm) +
|
||||
FIELD_LEN(kernel_key_version));
|
||||
|
||||
Memcpy(&header_version, header_blob, sizeof(header_version));
|
||||
Memcpy(&header_len, header_blob + FIELD_LEN(header_version),
|
||||
sizeof(header_len));
|
||||
Memcpy(&firmware_sign_algorithm,
|
||||
header_blob + (FIELD_LEN(header_version) +
|
||||
FIELD_LEN(header_len)),
|
||||
sizeof(firmware_sign_algorithm));
|
||||
Memcpy(&kernel_sign_algorithm,
|
||||
header_blob + (FIELD_LEN(header_version) +
|
||||
FIELD_LEN(header_len) +
|
||||
FIELD_LEN(firmware_sign_algorithm)),
|
||||
sizeof(kernel_sign_algorithm));
|
||||
|
||||
/* TODO(gauravsh): Make this return two different error types depending
|
||||
* on whether the firmware or kernel signing algorithm is invalid. */
|
||||
if (firmware_sign_algorithm >= kNumAlgorithms)
|
||||
return VERIFY_KERNEL_INVALID_ALGORITHM;
|
||||
if (kernel_sign_algorithm >= kNumAlgorithms)
|
||||
return VERIFY_KERNEL_INVALID_ALGORITHM;
|
||||
|
||||
*firmware_algorithm = (int) firmware_sign_algorithm;
|
||||
*kernel_algorithm = (int) kernel_sign_algorithm;
|
||||
kernel_sign_key_len = RSAProcessedKeySize(kernel_sign_algorithm);
|
||||
firmware_sign_key_len = RSAProcessedKeySize(firmware_sign_algorithm);
|
||||
|
||||
|
||||
/* Verify if header len is correct? */
|
||||
if (header_len != (base_header_checksum_offset +
|
||||
kernel_sign_key_len +
|
||||
FIELD_LEN(header_checksum))) {
|
||||
debug("VerifyKernelHeader: Header length mismatch\n");
|
||||
return VERIFY_KERNEL_INVALID_IMAGE;
|
||||
}
|
||||
*kernel_header_len = (int) header_len;
|
||||
|
||||
/* Verify if the hash of the header is correct. */
|
||||
header_checksum = DigestBuf(header_blob,
|
||||
header_len - FIELD_LEN(header_checksum),
|
||||
SHA512_DIGEST_ALGORITHM);
|
||||
if (SafeMemcmp(header_checksum,
|
||||
header_blob + (base_header_checksum_offset +
|
||||
kernel_sign_key_len),
|
||||
FIELD_LEN(header_checksum))) {
|
||||
Free(header_checksum);
|
||||
debug("VerifyKernelHeader: Invalid header hash\n");
|
||||
return VERIFY_KERNEL_INVALID_IMAGE;
|
||||
}
|
||||
Free(header_checksum);
|
||||
|
||||
/* Verify kernel key signature unless we are in dev mode. */
|
||||
if (!dev_mode) {
|
||||
if (!RSAVerifyBinary_f(firmware_key_blob, NULL, /* Key to use */
|
||||
header_blob, /* Data to verify */
|
||||
header_len, /* Length of data */
|
||||
header_blob + header_len, /* Expected Signature */
|
||||
firmware_sign_algorithm))
|
||||
return VERIFY_KERNEL_KEY_SIGNATURE_FAILED;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
int VerifyKernelConfig(RSAPublicKey* kernel_sign_key,
|
||||
const uint8_t* config_blob,
|
||||
int algorithm,
|
||||
uint64_t* kernel_len) {
|
||||
uint64_t len;
|
||||
if (!RSAVerifyBinary_f(NULL, kernel_sign_key, /* Key to use */
|
||||
config_blob, /* Data to verify */
|
||||
KERNEL_CONFIG_FIELD_LEN, /* Length of data */
|
||||
config_blob + KERNEL_CONFIG_FIELD_LEN, /* Expected
|
||||
* Signature */
|
||||
algorithm))
|
||||
return VERIFY_KERNEL_CONFIG_SIGNATURE_FAILED;
|
||||
|
||||
Memcpy(&len,
|
||||
config_blob + (FIELD_LEN(kernel_version) + FIELD_LEN(options.version) +
|
||||
FIELD_LEN(options.cmd_line)),
|
||||
sizeof(len));
|
||||
*kernel_len = len;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int VerifyKernelData(RSAPublicKey* kernel_sign_key,
|
||||
const uint8_t* kernel_config_start,
|
||||
const uint8_t* kernel_data_start,
|
||||
uint64_t kernel_len,
|
||||
int algorithm) {
|
||||
int signature_len = siglen_map[algorithm];
|
||||
uint8_t* digest;
|
||||
DigestContext ctx;
|
||||
|
||||
/* Since the kernel signature is computed over the kernel version, options
|
||||
* and data, which does not form a contiguous region of memory, we calculate
|
||||
* the message digest ourselves. */
|
||||
DigestInit(&ctx, algorithm);
|
||||
DigestUpdate(&ctx, kernel_config_start, KERNEL_CONFIG_FIELD_LEN);
|
||||
DigestUpdate(&ctx, kernel_data_start + signature_len, kernel_len);
|
||||
digest = DigestFinal(&ctx);
|
||||
if (!RSAVerifyBinaryWithDigest_f(
|
||||
NULL, kernel_sign_key, /* Key to use. */
|
||||
digest, /* Digest of the data to verify. */
|
||||
kernel_data_start, /* Expected Signature */
|
||||
algorithm)) {
|
||||
Free(digest);
|
||||
return VERIFY_KERNEL_SIGNATURE_FAILED;
|
||||
}
|
||||
Free(digest);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int VerifyKernel(const uint8_t* firmware_key_blob,
|
||||
const uint8_t* kernel_blob,
|
||||
const int dev_mode) {
|
||||
int error_code;
|
||||
int firmware_sign_algorithm; /* Firmware signing key algorithm. */
|
||||
int kernel_sign_algorithm; /* Kernel Signing key algorithm. */
|
||||
RSAPublicKey* kernel_sign_key;
|
||||
int kernel_sign_key_len, kernel_key_signature_len, kernel_signature_len,
|
||||
header_len;
|
||||
uint64_t kernel_len;
|
||||
const uint8_t* header_ptr; /* Pointer to header. */
|
||||
const uint8_t* kernel_sign_key_ptr; /* Pointer to signing key. */
|
||||
const uint8_t* config_ptr; /* Pointer to kernel config block. */
|
||||
const uint8_t* kernel_ptr; /* Pointer to kernel signature/data. */
|
||||
|
||||
/* Note: All the offset calculations are based on struct FirmwareImage which
|
||||
* is defined in include/firmware_image.h. */
|
||||
|
||||
/* Compare magic bytes. */
|
||||
if (SafeMemcmp(kernel_blob, KERNEL_MAGIC, KERNEL_MAGIC_SIZE))
|
||||
return VERIFY_KERNEL_WRONG_MAGIC;
|
||||
header_ptr = kernel_blob + KERNEL_MAGIC_SIZE;
|
||||
|
||||
/* Only continue if header verification succeeds. */
|
||||
if ((error_code = VerifyKernelHeader(firmware_key_blob, header_ptr, dev_mode,
|
||||
&firmware_sign_algorithm,
|
||||
&kernel_sign_algorithm, &header_len))) {
|
||||
debug("VerifyKernel: Kernel header verification failed.\n");
|
||||
return error_code; /* AKA jump to recovery. */
|
||||
}
|
||||
/* Parse signing key into RSAPublicKey structure since it is required multiple
|
||||
* times. */
|
||||
kernel_sign_key_len = RSAProcessedKeySize(kernel_sign_algorithm);
|
||||
kernel_sign_key_ptr = header_ptr + (FIELD_LEN(header_version) +
|
||||
FIELD_LEN(header_len) +
|
||||
FIELD_LEN(firmware_sign_algorithm) +
|
||||
FIELD_LEN(kernel_sign_algorithm) +
|
||||
FIELD_LEN(kernel_key_version));
|
||||
kernel_sign_key = RSAPublicKeyFromBuf(kernel_sign_key_ptr,
|
||||
kernel_sign_key_len);
|
||||
kernel_signature_len = siglen_map[kernel_sign_algorithm];
|
||||
kernel_key_signature_len = siglen_map[firmware_sign_algorithm];
|
||||
|
||||
/* Only continue if config verification succeeds. */
|
||||
config_ptr = (header_ptr + header_len + kernel_key_signature_len);
|
||||
if ((error_code = VerifyKernelConfig(kernel_sign_key, config_ptr,
|
||||
kernel_sign_algorithm,
|
||||
&kernel_len))) {
|
||||
RSAPublicKeyFree(kernel_sign_key);
|
||||
return error_code; /* AKA jump to recovery. */
|
||||
}
|
||||
/* Only continue if kernel data verification succeeds. */
|
||||
kernel_ptr = (config_ptr +
|
||||
KERNEL_CONFIG_FIELD_LEN + /* Skip config block/signature. */
|
||||
kernel_signature_len);
|
||||
|
||||
if ((error_code = VerifyKernelData(kernel_sign_key, config_ptr, kernel_ptr,
|
||||
kernel_len,
|
||||
kernel_sign_algorithm))) {
|
||||
RSAPublicKeyFree(kernel_sign_key);
|
||||
return error_code; /* AKA jump to recovery. */
|
||||
}
|
||||
RSAPublicKeyFree(kernel_sign_key);
|
||||
return 0; /* Success! */
|
||||
}
|
||||
|
||||
uint32_t GetLogicalKernelVersion(uint8_t* kernel_blob) {
|
||||
uint8_t* kernel_ptr;
|
||||
uint16_t kernel_key_version;
|
||||
uint16_t kernel_version;
|
||||
uint16_t firmware_sign_algorithm;
|
||||
uint16_t kernel_sign_algorithm;
|
||||
int kernel_key_signature_len;
|
||||
int kernel_sign_key_len;
|
||||
kernel_ptr = kernel_blob + (FIELD_LEN(magic) +
|
||||
FIELD_LEN(header_version) +
|
||||
FIELD_LEN(header_len));
|
||||
Memcpy(&firmware_sign_algorithm, kernel_ptr, sizeof(firmware_sign_algorithm));
|
||||
kernel_ptr += FIELD_LEN(firmware_sign_algorithm);
|
||||
Memcpy(&kernel_sign_algorithm, kernel_ptr, sizeof(kernel_sign_algorithm));
|
||||
kernel_ptr += FIELD_LEN(kernel_sign_algorithm);
|
||||
Memcpy(&kernel_key_version, kernel_ptr, sizeof(kernel_key_version));
|
||||
|
||||
if (firmware_sign_algorithm >= kNumAlgorithms)
|
||||
return 0;
|
||||
if (kernel_sign_algorithm >= kNumAlgorithms)
|
||||
return 0;
|
||||
kernel_key_signature_len = siglen_map[firmware_sign_algorithm];
|
||||
kernel_sign_key_len = RSAProcessedKeySize(kernel_sign_algorithm);
|
||||
kernel_ptr += (FIELD_LEN(kernel_key_version) +
|
||||
kernel_sign_key_len +
|
||||
FIELD_LEN(header_checksum) +
|
||||
kernel_key_signature_len);
|
||||
Memcpy(&kernel_version, kernel_ptr, sizeof(kernel_version));
|
||||
return CombineUint16Pair(kernel_key_version, kernel_version);
|
||||
}
|
||||
|
||||
int VerifyKernelDriver_f(uint8_t* firmware_key_blob,
|
||||
kernel_entry* kernelA,
|
||||
kernel_entry* kernelB,
|
||||
int dev_mode) {
|
||||
int i;
|
||||
/* Contains the logical kernel version (32-bit) which is calculated as
|
||||
* (kernel_key_version << 16 | kernel_version) where
|
||||
* [kernel_key_version], [firmware_version] are both 16-bit.
|
||||
*/
|
||||
uint32_t kernelA_lversion, kernelB_lversion;
|
||||
uint32_t min_lversion; /* Minimum of kernel A and kernel B lversion. */
|
||||
uint32_t stored_lversion; /* Stored logical version in the TPM. */
|
||||
kernel_entry* try_kernel[2]; /* Kernel in try order. */
|
||||
int try_kernel_which[2]; /* Which corresponding kernel in the try order */
|
||||
uint32_t try_kernel_lversion[2]; /* Their logical versions. */
|
||||
|
||||
/* [kernel_to_boot] will eventually contain the boot path to follow
|
||||
* and is returned to the caller. Initially, we set it to recovery. If
|
||||
* a valid bootable kernel is found, it will be set to that. */
|
||||
int kernel_to_boot = BOOT_KERNEL_RECOVERY_CONTINUE;
|
||||
|
||||
|
||||
/* The TPM must already have be initialized, so no need to call SetupTPM(). */
|
||||
|
||||
/* We get the key versions by reading directly from the image blobs without
|
||||
* any additional (expensive) sanity checking on the blob since it's faster to
|
||||
* outright reject a kernel with an older kernel key version. A malformed
|
||||
* or corrupted kernel blob will still fail when VerifyKernel() is called
|
||||
* on it.
|
||||
*/
|
||||
kernelA_lversion = GetLogicalKernelVersion(kernelA->kernel_blob);
|
||||
kernelB_lversion = GetLogicalKernelVersion(kernelB->kernel_blob);
|
||||
min_lversion = Min(kernelA_lversion, kernelB_lversion);
|
||||
stored_lversion = CombineUint16Pair(GetStoredVersion(KERNEL_KEY_VERSION),
|
||||
GetStoredVersion(KERNEL_VERSION));
|
||||
|
||||
/* TODO(gauravsh): The kernel entries kernelA and kernelB come from the
|
||||
* partition table - verify its signature/checksum before proceeding
|
||||
* further. */
|
||||
|
||||
/* The logic for deciding which kernel to boot from is taken from the
|
||||
* the Chromium OS Drive Map design document.
|
||||
*
|
||||
* We went to consider the kernels in their according to their boot
|
||||
* priority attribute value.
|
||||
*/
|
||||
|
||||
if (kernelA->boot_priority >= kernelB->boot_priority) {
|
||||
try_kernel[0] = kernelA;
|
||||
try_kernel_which[0] = BOOT_KERNEL_A_CONTINUE;
|
||||
try_kernel_lversion[0] = kernelA_lversion;
|
||||
try_kernel[1] = kernelB;
|
||||
try_kernel_which[1] = BOOT_KERNEL_B_CONTINUE;
|
||||
try_kernel_lversion[1] = kernelB_lversion;
|
||||
} else {
|
||||
try_kernel[0] = kernelB;
|
||||
try_kernel_which[0] = BOOT_KERNEL_B_CONTINUE;
|
||||
try_kernel_lversion[0] = kernelB_lversion;
|
||||
try_kernel[1] = kernelA;
|
||||
try_kernel_which[1] = BOOT_KERNEL_A_CONTINUE;
|
||||
try_kernel_lversion[1] = kernelA_lversion;
|
||||
}
|
||||
|
||||
/* TODO(gauravsh): Changes to boot_tries_remaining and boot_priority
|
||||
* below should be propagated to partition table. This will be added
|
||||
* once the firmware parition table parsing code is in. */
|
||||
for (i = 0; i < 2; i++) {
|
||||
if ((try_kernel[i]->boot_success_flag ||
|
||||
try_kernel[i]->boot_tries_remaining) &&
|
||||
(VERIFY_KERNEL_SUCCESS == VerifyKernel(firmware_key_blob,
|
||||
try_kernel[i]->kernel_blob,
|
||||
dev_mode))) {
|
||||
if (try_kernel[i]->boot_tries_remaining > 0)
|
||||
try_kernel[i]->boot_tries_remaining--;
|
||||
if (stored_lversion > try_kernel_lversion[i])
|
||||
continue; /* Rollback: I am afraid I can't let you do that Dave. */
|
||||
if (i == 0 && (stored_lversion < try_kernel_lversion[1])) {
|
||||
/* The higher priority kernel is valid and bootable, See if we
|
||||
* need to update the stored version for rollback prevention. */
|
||||
if (VERIFY_KERNEL_SUCCESS == VerifyKernel(firmware_key_blob,
|
||||
try_kernel[1]->kernel_blob,
|
||||
dev_mode)) {
|
||||
WriteStoredVersion(KERNEL_KEY_VERSION,
|
||||
(uint16_t) (min_lversion >> 16));
|
||||
WriteStoredVersion(KERNEL_VERSION,
|
||||
(uint16_t) (min_lversion & 0xFFFF));
|
||||
stored_lversion = min_lversion; /* Update stored version as it's
|
||||
* used later. */
|
||||
}
|
||||
}
|
||||
kernel_to_boot = try_kernel_which[i];
|
||||
break; /* We found a valid kernel. */
|
||||
}
|
||||
try_kernel[i]->boot_priority = 0;
|
||||
} /* for loop. */
|
||||
|
||||
/* Lock Kernel TPM rollback indices from further writes.
|
||||
* TODO(gauravsh): Figure out if these can be combined into one
|
||||
* 32-bit location since we seem to always use them together. This can help
|
||||
* us minimize the number of NVRAM writes/locks (which are limited over flash
|
||||
* memory lifetimes.
|
||||
*/
|
||||
LockStoredVersion(KERNEL_KEY_VERSION);
|
||||
LockStoredVersion(KERNEL_VERSION);
|
||||
return kernel_to_boot;
|
||||
}
|
||||
Reference in New Issue
Block a user