This patch change the name of the section containing the functions
defined in assembly files from text.* to text.asm.*. This change
makes possible to select in the linker script the functions
defined in those files.
Change-Id: If35e44ef1b43ffd951dfac5e052db75d7198e2e0
Signed-off-by: Roberto Vargas <roberto.vargas@arm.com>
This patch add supports for the new API added for BL2 at EL3 for
FVP. We don't have a non-TF Boot ROM for FVP, but this option can be
tested setting specific parameters in the model.
The bl2 image is loaded directly in memory instead of being loaded
by a non-TF Boot ROM and the reset address is changed:
--data cluster0.cpu0=bl2.bin@0x4001000
-C cluster0.cpu0.RVBAR=0x4001000
These parameters mean that in the cold boot path the processor will
jump to BL2 again. For this reason, BL2 is loaded in dram in this
case, to avoid other images reclaiming BL2 memory.
Change-Id: Ieb2ff8535a9e67ccebcd8c2212cad366e7776422
Signed-off-by: Roberto Vargas <roberto.vargas@arm.com>
This patch enables BL2 to execute at the highest exception level
without any dependancy on TF BL1. This enables platforms which already
have a non-TF Boot ROM to directly load and execute BL2 and subsequent BL
stages without need for BL1. This is not currently possible because
BL2 executes at S-EL1 and cannot jump straight to EL3.
Change-Id: Ief1efca4598560b1b8c8e61fbe26d1f44e929d69
Signed-off-by: Roberto Vargas <roberto.vargas@arm.com>
Add some macros according to JEDEC Standard Embedded Multi-Media
Card (eMMC) Electrical Standard (5.1)": Table 145 - Bus Mode
Selection.
Change-Id: Iaa45e0582653ef4290efd60d039f0bdc420eeb47
Signed-off-by: Qixiang Xu <qixiang.xu@arm.com>
typedef mem_region_t mem_region_t;
... seems to work because they belong to different name-spaces,
but humans are confused even if compilers are not.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
On some build configurations BL31 is running out of space. Now that
TSP is moved to secure dram, we have a bit of additional space to use
in BL31.
Change-Id: Ib89fcd8bae99c85c9c5e5d9228bb42fb7048dcb6
Signed-off-by: Dimitris Papastamos <dimitris.papastamos@arm.com>
Signed-off-by: David Cunado <david.cunado@arm.com>
On some systems, the AMU counters might reset to 0 when a CPU
powerdown happens. This behaviour conflicts with the intended
use-case of AMU as lower ELs are only expected to see non-decreasing
counter values.
Change-Id: If25519965d4e6e47e09225d0e732947986cbb5ec
Signed-off-by: Dimitris Papastamos <dimitris.papastamos@arm.com>
Add some AMU helper functions to allow configuring, reading and
writing of the Group 0 and Group 1 counters. Documentation for these
helpers will come in a separate patch.
Change-Id: I656e070d2dae830c22414f694aa655341d4e2c40
Signed-off-by: Dimitris Papastamos <dimitris.papastamos@arm.com>
A new platform macro `PLAT_AMU_GROUP1_COUNTERS_MASK` controls which
group 1 counters should be enabled. The maximum number of group 1
counters supported by AMUv1 is 16 so the mask can be at most 0xffff.
If the platform does not define this mask, no group 1 counters are
enabled.
A related platform macro `PLAT_AMU_GROUP1_NR_COUNTERS` is used by
generic code to allocate an array to save and restore the counters on
CPU suspend.
Change-Id: I6d135badf4846292de931a43bb563077f42bb47b
Signed-off-by: Dimitris Papastamos <dimitris.papastamos@arm.com>
The suspend hook is published at the start of a CPU powerdown
operation. The resume hook is published at the end of a CPU powerup
operation.
Change-Id: I50c05e2dde0d33834095ac41b4fcea4c161bb434
Signed-off-by: Dimitris Papastamos <dimitris.papastamos@arm.com>
If the CSV2 field reads as 1 then branch targets trained in one
context cannot affect speculative execution in a different context.
In that case skip the workaround on Cortex A75.
Change-Id: I4d5504cba516a67311fb5f0657b08f72909cbd38
Signed-off-by: Dimitris Papastamos <dimitris.papastamos@arm.com>
Invalidate the Branch Target Buffer (BTB) on entry to EL3 by
temporarily dropping into AArch32 Secure-EL1 and executing the
`BPIALL` instruction.
This is achieved by using 3 vector tables. There is the runtime
vector table which is used to handle exceptions and 2 additional
tables which are required to implement this workaround. The
additional tables are `vbar0` and `vbar1`.
The sequence of events for handling a single exception is
as follows:
1) Install vector table `vbar0` which saves the CPU context on entry
to EL3 and sets up the Secure-EL1 context to execute in AArch32 mode
with the MMU disabled and I$ enabled. This is the default vector table.
2) Before doing an ERET into Secure-EL1, switch vbar to point to
another vector table `vbar1`. This is required to restore EL3 state
when returning from the workaround, before proceeding with normal EL3
exception handling.
3) While in Secure-EL1, the `BPIALL` instruction is executed and an
SMC call back to EL3 is performed.
4) On entry to EL3 from Secure-EL1, the saved context from step 1) is
restored. The vbar is switched to point to `vbar0` in preparation to
handle further exceptions. Finally a branch to the runtime vector
table entry is taken to complete the handling of the original
exception.
This workaround is enabled by default on the affected CPUs.
NOTE
====
There are 4 different stubs in Secure-EL1. Each stub corresponds to
an exception type such as Sync/IRQ/FIQ/SError. Each stub will move a
different value in `R0` before doing an SMC call back into EL3.
Without this piece of information it would not be possible to know
what the original exception type was as we cannot use `ESR_EL3` to
distinguish between IRQs and FIQs.
Change-Id: I90b32d14a3735290b48685d43c70c99daaa4b434
Signed-off-by: Dimitris Papastamos <dimitris.papastamos@arm.com>
Invalidate the Branch Target Buffer (BTB) on entry to EL3 by disabling
and enabling the MMU. To achieve this without performing any branch
instruction, a per-cpu vbar is installed which executes the workaround
and then branches off to the corresponding vector entry in the main
vector table. A side effect of this change is that the main vbar is
configured before any reset handling. This is to allow the per-cpu
reset function to override the vbar setting.
This workaround is enabled by default on the affected CPUs.
Change-Id: I97788d38463a5840a410e3cea85ed297a1678265
Signed-off-by: Dimitris Papastamos <dimitris.papastamos@arm.com>
This patch adds support to receive function ID with NS world's
memory ranges to provide the memory snapshot to TLK.
Signed-off-by: Varun Wadekar <vwadekar@nvidia.com>
To allow BL31 to grow in SRAM, move TSP in TZC secured DRAM
by default.
Increase the BL31 max limit by one page.
Change-Id: Idd3479be02f0f9bafac2f275376d7db0c2015431
Signed-off-by: Dimitris Papastamos <dimitris.papastamos@arm.com>
With this patch, ARM platforms are expected to define the macros
PLAT_ARM_SDEI_PRIVATE_EVENTS and PLAT_ARM_SDEI_SHARED_EVENTS as a list
of private and shared events, respectively. This allows for individual
platforms to define their own events.
Change-Id: I66851fdcbff83fd9568c2777ade9eb12df284b49
Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
A new platform define, `PLAT_SP_IMAGE_XLAT_SECTION_NAME`, has been
introduced to select the section where the translation tables used by
the S-EL1/S-EL0 are placed.
This define has been used to move the translation tables to DRAM secured
by TrustZone.
Most of the extra needed space in BL31 when SPM is enabled is due to the
large size of the translation tables. By moving them to this memory
region we can save 44 KiB.
A new argument has been added to REGISTER_XLAT_CONTEXT2() to specify the
region where the translation tables have to be placed by the linker.
Change-Id: Ia81709b4227cb8c92601f0caf258f624c0467719
Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
Previously the cache flush happened in 2 different places in code
depending on whether TRUSTED_BOARD_BOOT is enabled or not. This
patch unifies this code path for both the cases. The `load_image()`
function is now made an internal static function.
Change-Id: I96a1da29d29236bbc34b1c95053e6a9a7fc98a54
Signed-off-by: Soby Mathew <soby.mathew@arm.com>
The defines have been renamed to match the names used in the
documentation.
Change-Id: I2f18b65112d2db040a89d5a8522e9790c3e21628
Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
This patch adds a new build option, ENABLE_SVE_FOR_NS, which when set
to one EL3 will check to see if the Scalable Vector Extension (SVE) is
implemented when entering and exiting the Non-secure world.
If SVE is implemented, EL3 will do the following:
- Entry to Non-secure world: SIMD, FP and SVE functionality is enabled.
- Exit from Non-secure world: SIMD, FP and SVE functionality is
disabled. As SIMD and FP registers are part of the SVE Z-registers
then any use of SIMD / FP functionality would corrupt the SVE
registers.
The build option default is 1. The SVE functionality is only supported
on AArch64 and so the build option is set to zero when the target
archiecture is AArch32.
This build option is not compatible with the CTX_INCLUDE_FPREGS - an
assert will be raised on platforms where SVE is implemented and both
ENABLE_SVE_FOR_NS and CTX_INCLUDE_FPREGS are set to 1.
Also note this change prevents secure world use of FP&SIMD registers on
SVE-enabled platforms. Existing Secure-EL1 Payloads will not work on
such platforms unless ENABLE_SVE_FOR_NS is set to 0.
Additionally, on the first entry into the Non-secure world the SVE
functionality is enabled and the SVE Z-register length is set to the
maximum size allowed by the architecture. This includes the use case
where EL2 is implemented but not used.
Change-Id: Ie2d733ddaba0b9bef1d7c9765503155188fe7dae
Signed-off-by: David Cunado <david.cunado@arm.com>
This patch fixes a couple of issues for AArch32 builds on ARM reference
platforms :
1. The arm_def.h previously defined the same BL32_BASE value for AArch64 and
AArch32 build. Since BL31 is not present in AArch32 mode, this meant that
the BL31 memory is empty when built for AArch32. Hence this patch allocates
BL32 to the memory region occupied by BL31 for AArch32 builds.
As a side-effect of this change, the ARM_TSP_RAM_LOCATION macro cannot
be used to control the load address of BL32 in AArch32 mode which was
never the intention of the macro anyway.
2. A static assert is added to sp_min linker script to check that the progbits
are within the bounds expected when overlaid with other images.
3. Fix specifying `SPD` when building Juno for AArch32 mode. Due to the quirks
involved when building Juno for AArch32 mode, the build option SPD needed to
specifed. This patch corrects this and also updates the documentation in the
user-guide.
4. Exclude BL31 from the build and FIP when building Juno for AArch32 mode. As
a result the previous assumption that BL31 must be always present is removed
and the certificates for BL31 is only generated if `NEED_BL31` is defined.
Change-Id: I1c39bbc0abd2be8fbe9f2dea2e9cb4e3e3e436a8
Signed-off-by: Soby Mathew <soby.mathew@arm.com>
When defining different sections in linker scripts it is needed to align
them to multiples of the page size. In most linker scripts this is done
by aligning to the hardcoded value 4096 instead of PAGE_SIZE.
This may be confusing when taking a look at all the codebase, as 4096
is used in some parts that aren't meant to be a multiple of the page
size.
Change-Id: I36c6f461c7782437a58d13d37ec8b822a1663ec1
Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
The `ENABLE_AMU` build option can be used to enable the
architecturally defined AMU counters. At present, there is no support
for the auxiliary counter group.
Change-Id: Ifc7532ef836f83e629f2a146739ab61e75c4abc8
Signed-off-by: Dimitris Papastamos <dimitris.papastamos@arm.com>
The `ENABLE_AMU` build option can be used to enable the
architecturally defined AMU counters. At present, there is no support
for the auxiliary counter group.
Change-Id: I7ea0c0a00327f463199d1b0a481f01dadb09d312
Signed-off-by: Dimitris Papastamos <dimitris.papastamos@arm.com>
The Cortex A75 has 5 AMU counters. The first three counters are fixed
and the remaining two are programmable.
A new build option is introduced, `ENABLE_AMU`. When set, the fixed
counters will be enabled for use by lower ELs. The programmable
counters are currently disabled.
Change-Id: I4bd5208799bb9ed7d2596e8b0bfc87abbbe18740
Signed-off-by: Dimitris Papastamos <dimitris.papastamos@arm.com>
The flag support the following values:
- sha256 (default)
- sha384
- sha512
Change-Id: I7a49d858c361e993949cf6ada0a86575c3291066
Signed-off-by: Qixiang Xu <qixiang.xu@arm.com>
Factor out SPE operations in a separate file. Use the publish
subscribe framework to drain the SPE buffers before entering secure
world. Additionally, enable SPE before entering normal world.
A side effect of this change is that the profiling buffers are now
only drained when a transition from normal world to secure world
happens. Previously they were drained also on return from secure
world, which is unnecessary as SPE is not supported in S-EL1.
Change-Id: I17582c689b4b525770dbb6db098b3a0b5777b70a
Signed-off-by: Dimitris Papastamos <dimitris.papastamos@arm.com>
Register count is currently declared as unsigned, where as there are
asserts in place to check it being negative during unregister. These are
flagged as never being true.
Change-Id: I34f00f0ac5bf88205791e9c1298a175dababe7c8
Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
If an implementation of ARMv8.2 includes ARMv8.2-LPA, the value 0b0110
is permitted in ID_AA64MMFR0_EL1.PARange, which means that the Physical
Address range supported is 52 bits (4 PiB). It is a reserved value
otherwise.
Change-Id: Ie0147218e9650aa09f0034a9ee03c1cca8db908a
Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
The FPEXC32_EL2 register controls SIMD and FP functionality when the
lower ELs are executing in AArch32 mode. It is architecturally mapped
to AArch32 system register FPEXC.
This patch removes FPEXC32_EL2 register from the System Register context
and adds it to the floating-point context. EL3 only saves / restores the
floating-point context if the build option CTX_INCLUDE_FPREGS is set to 1.
The rationale for this change is that if the Secure world is using FP
functionality and EL3 is not managing the FP context, then the Secure
world will save / restore the appropriate FP registers.
NOTE - this is a break in behaviour in the unlikely case that
CTX_INCLUDE_FPREGS is set to 0 and the platform contains an AArch32
Secure Payload that modifies FPEXC, but does not save and restore
this register
Change-Id: Iab80abcbfe302752d52b323b4abcc334b585c184
Signed-off-by: David Cunado <david.cunado@arm.com>
This allows for other EL3 components to schedule an SDEI event dispatch
to Normal world upon the next ERET. The API usage constrains are set out
in the SDEI dispatcher documentation.
Documentation to follow.
Change-Id: Id534bae0fd85afc94523490098c81f85c4e8f019
Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
Support SDEI on ARM platforms using frameworks implemented in earlier
patches by defining and exporting SDEI events: this patch defines the
standard event 0, and a handful of shared and private dynamic events.
Change-Id: I9d3d92a92cff646b8cc55eabda78e140deaa24e1
Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>