/* Copyright (c) 2011 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ /* Task scheduling / events module for Chrome EC operating system */ #include #include "config.h" #include "atomic.h" #include "console.h" #include "cpu.h" #include "task.h" #include "timer.h" #include "uart.h" #include "util.h" /** * Global memory size for a task : 512 bytes * including its contexts and its stack */ #define TASK_SIZE_LOG2 9 #define TASK_SIZE (1<>", CONFIG_TASK_LIST }; #undef TASK extern void __switchto(task_ *from, task_ *to); /* Idle task. Executed when no tasks are ready to be scheduled. */ void __idle(void) { while (1) { /* Wait for the irq event */ asm("wfi"); /* TODO: more power management here */ } } static void task_exit_trap(void) { int i = task_get_current(); uart_printf("[Task %d (%s) exited!]\n", i, task_names[i]); /* Exited tasks simply sleep forever */ while (1) task_wait_event(-1); } #define GUARD_VALUE 0x12345678 /* Declare and fill the contexts for all tasks. Note that while it would be * more readable to use the struct fields (.sp, .guard) where applicable, gcc * can't mix initializing some fields on one side of the union and some fields * on the other, so we have to use .context for all initialization. */ #define TASK(n, r, d) { \ .context[0] = (uint32_t)(tasks + TASK_ID_##n + 1) - 64, \ .context[2] = GUARD_VALUE, \ .context[TASK_SIZE/4 - 8/*r0*/] = (uint32_t)d, \ .context[TASK_SIZE/4 - 3/*lr*/] = (uint32_t)task_exit_trap, \ .context[TASK_SIZE/4 - 2/*pc*/] = (uint32_t)r, \ .context[TASK_SIZE/4 - 1/*psr*/] = 0x01000000 }, #include TASK_LIST static task_ tasks[] __attribute__((section(".data.tasks"))) __attribute__((aligned(TASK_SIZE))) = { TASK(IDLE, __idle, 0) CONFIG_TASK_LIST }; #undef TASK /* Reserve space to discard context on first context switch. */ uint32_t scratchpad[17] __attribute__((section(".data.tasks"))); /* context switch at the next exception exit if needed */ /* TODO: who sets this back to 0 after it's set to 1? */ static int need_resched = 0; /** * bitmap of all tasks ready to be run * * Currently all tasks are enabled at startup. */ static uint32_t tasks_ready = (1<= TASK_ID_COUNT) id = TASK_ID_INVALID; return id; } uint32_t *task_get_event_bitmap(task_id_t tskid) { task_ *tsk = __task_id_to_ptr(tskid); return &tsk->events; } /** * scheduling system call */ void svc_handler(int desched, task_id_t resched) { task_ *current, *next; /* push the priority to -1 until the return, to avoid being * interrupted */ asm volatile("cpsid f\n" "isb\n"); current = __get_task_scheduled(); #ifdef CONFIG_OVERFLOW_DETECT ASSERT(current->guard == GUARD_VALUE); #endif if (desched && !current->events) { /* Remove our own ready bit */ tasks_ready &= ~(1 << (current-tasks)); } tasks_ready |= 1 << resched; ASSERT(tasks_ready); next = __task_id_to_ptr(31 - __builtin_clz(tasks_ready)); /* Nothing to do */ if (next == current) return; __switchto(current, next); } void __schedule(int desched, int resched) { register int p0 asm("r0") = desched; register int p1 asm("r1") = resched; /* TODO remove hardcoded opcode * SWI not compiled properly for ARMv7-M on our current chroot toolchain */ asm(".hword 0xdf00 @swi 0"::"r"(p0),"r"(p1)); } void task_resched_if_needed(void *excep_return) { /** * continue iff a rescheduling event happened and * we are not called from another exception */ if (!need_resched || (((uint32_t)excep_return & 0xf) == 1)) return; svc_handler(0, 0); } static uint32_t __wait_evt(int timeout_us, task_id_t resched) { task_ *tsk = __get_current(); task_id_t me = tsk - tasks; uint32_t evt; int ret; ASSERT(!in_interrupt_context()); if (timeout_us > 0) { timestamp_t deadline = get_time(); deadline.val += timeout_us; ret = timer_arm(deadline, me); ASSERT(ret == EC_SUCCESS); } while (!(evt = atomic_read_clear(&tsk->events))) { /* Remove ourself and get the next task in the scheduler */ __schedule(1, resched); resched = TASK_ID_IDLE; } if (timeout_us > 0) timer_cancel(me); return evt; } uint32_t task_set_event(task_id_t tskid, uint32_t event, int wait) { task_ *receiver = __task_id_to_ptr(tskid); ASSERT(receiver); /* set the event bit in the receiver message bitmap */ atomic_or(&receiver->events, event); /* Re-schedule if priorities have changed */ if (in_interrupt_context()) { /* the receiver might run again */ atomic_or(&tasks_ready, 1 << tskid); need_resched = 1; } else { if (wait) return __wait_evt(-1, tskid); else __schedule(0, tskid); } return 0; } uint32_t task_wait_event(int timeout_us) { return __wait_evt(timeout_us, TASK_ID_IDLE); } void task_enable_irq(int irq) { CPU_NVIC_EN(irq / 32) = 1 << (irq % 32); } void task_disable_irq(int irq) { CPU_NVIC_DIS(irq / 32) = 1 << (irq % 32); } void task_clear_pending_irq(int irq) { CPU_NVIC_UNPEND(irq / 32) = 1 << (irq % 32); } void task_trigger_irq(int irq) { CPU_NVIC_SWTRIG = irq; } /* Initialize IRQs in the NVIC and set their priorities as defined by the * DECLARE_IRQ statements. */ static void __nvic_init_irqs(void) { /* Get the IRQ priorities section from the linker */ extern struct irq_priority __irqprio[]; extern struct irq_priority __irqprio_end[]; int irq_count = __irqprio_end - __irqprio; int i; /* Mask and clear all pending interrupts */ for (i = 0; i < 5; i++) { CPU_NVIC_DIS(i) = 0xffffffff; CPU_NVIC_UNPEND(i) = 0xffffffff; } /* Re-enable global interrupts in case they're disabled. On a reboot, * they're already enabled; if we've jumped here from another image, * they're not. */ interrupt_enable(); /* Set priorities */ for (i = 0; i < irq_count; i++) { uint8_t irq = __irqprio[i].irq; uint8_t prio = __irqprio[i].priority; uint32_t prio_shift = irq % 4 * 8 + 5; CPU_NVIC_PRI(irq / 4) = (CPU_NVIC_PRI(irq / 4) & ~(0x7 << prio_shift)) | (prio << prio_shift); } } void mutex_lock(struct mutex *mtx) { uint32_t value; uint32_t id = 1 << task_get_current(); ASSERT(id != TASK_ID_INVALID); atomic_or(&mtx->waiters, id); do { /* try to get the lock (set 1 into the lock field) */ __asm__ __volatile__(" ldrex %0, [%1]\n" " teq %0, #0\n" " it eq\n" " strexeq %0, %2, [%1]\n" : "=&r" (value) : "r" (&mtx->lock), "r" (2) : "cc"); /* "value" is equals to 1 if the store conditional failed, * 2 if somebody else owns the mutex, 0 else. */ if (value == 2) { /* contention on the mutex */ task_wait_event(0); } } while (value); atomic_clear(&mtx->waiters, id); } void mutex_unlock(struct mutex *mtx) { uint32_t waiters; task_ *tsk = __get_current(); __asm__ __volatile__(" ldr %0, [%2]\n" " str %3, [%1]\n" : "=&r" (waiters) : "r" (&mtx->lock), "r" (&mtx->waiters), "r" (0) : "cc"); while (waiters) { task_id_t id = 31 - __builtin_clz(waiters); /* somebody is waiting on the mutex */ task_set_event(id, TASK_EVENT_MUTEX, 0); waiters &= ~(1 << id); } /* Ensure no event is remaining from mutex wake-up */ atomic_clear(&tsk->events, TASK_EVENT_MUTEX); } #ifdef CONFIG_DEBUG int command_task_info(int argc, char **argv) { int i; for (i = 0; i < TASK_ID_COUNT; i++) { char is_ready = (tasks_ready & (1<guard = GUARD_VALUE; /* sanity checks about static task invariants */ BUILD_ASSERT(TASK_ID_COUNT <= sizeof(unsigned) * 8); BUILD_ASSERT(TASK_ID_COUNT < (1 << (sizeof(task_id_t) * 8))); /* Initialize IRQs */ __nvic_init_irqs(); return EC_SUCCESS; }