/* Copyright 2016 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "common.h" #include "console.h" #include "flash.h" #include "nvmem.h" #include "shared_mem.h" #include "timer.h" #include "util.h" #define CPRINTF(format, args...) cprintf(CC_COMMAND, format, ## args) #define CPRINTS(format, args...) cprints(CC_COMMAND, format, ## args) #define NVMEM_ACQUIRE_CACHE_SLEEP_MS 25 #define NVMEM_ACQUIRE_CACHE_MAX_ATTEMPTS (250 / NVMEM_ACQUIRE_CACHE_SLEEP_MS) #define NVMEM_NOT_INITIALIZED (-1) /* Structure MvMem Partition */ struct nvmem_partition { struct nvmem_tag tag; uint8_t buffer[NVMEM_PARTITION_SIZE - sizeof(struct nvmem_tag)]; }; /* NvMem user buffer start offset table */ static uint32_t nvmem_user_start_offset[NVMEM_NUM_USERS]; /* A/B partion that is most up to date */ static int nvmem_act_partition; /* NvMem Cache Memory pointer */ static uint8_t *cache_base_ptr; /* NvMem error state */ static int nvmem_error_state; static int nvmem_verify_partition_sha(int index) { uint8_t sha_comp[NVMEM_SHA_SIZE]; struct nvmem_partition *p_part; uint8_t *p_data; p_part = (struct nvmem_partition *)CONFIG_FLASH_NVMEM_BASE; p_part += index; p_data = (uint8_t *)p_part; p_data += sizeof(sha_comp); /* Number of bytes to compute sha over */ nvmem_compute_sha(p_data, (NVMEM_PARTITION_SIZE - NVMEM_SHA_SIZE), sha_comp, NVMEM_SHA_SIZE); /* Check if computed value matches stored value. */ return memcmp(p_part->tag.sha, sha_comp, NVMEM_SHA_SIZE); } static int nvmem_acquire_cache(void) { int attempts = 0; int ret; /* TODO Need to add mutex lock/unlock crosbug.com/p/52520 */ if (shared_mem_size() < NVMEM_PARTITION_SIZE) { CPRINTF("Not enough shared mem! avail = 0x%x < reqd = 0x%x\n", shared_mem_size(), NVMEM_PARTITION_SIZE); return EC_ERROR_OVERFLOW; } while (attempts < NVMEM_ACQUIRE_CACHE_MAX_ATTEMPTS) { ret = shared_mem_acquire(NVMEM_PARTITION_SIZE, (char **)&cache_base_ptr); if (ret == EC_SUCCESS) return EC_SUCCESS; else if (ret == EC_ERROR_BUSY) { CPRINTF("Shared Mem not avail! Attempt %d\n", attempts); /* wait NVMEM_ACQUIRE_CACHE_SLEEP_MS msec */ /* TODO: what time really makes sense? */ msleep(NVMEM_ACQUIRE_CACHE_SLEEP_MS); } attempts++; } /* Timeout Error condition */ CPRINTF("%s:%d\n", __func__, __LINE__); return EC_ERROR_TIMEOUT; } static int nvmem_update_cache_ptr(void) { uint8_t *p_src; /* * If cache_base_ptr is not NULL, then nothing to do. However, if NULL, * then need to first acquire the shared memory buffer and the full * partition needs to be copied from flash into the cache buffer. */ if (cache_base_ptr == NULL) { if (nvmem_acquire_cache() != EC_SUCCESS) return EC_ERROR_TIMEOUT; /* Copy partiion contents from flash into cache buffer */ p_src = (uint8_t *)(CONFIG_FLASH_NVMEM_BASE + nvmem_act_partition * NVMEM_PARTITION_SIZE); memcpy(cache_base_ptr, p_src, NVMEM_PARTITION_SIZE); } return EC_SUCCESS; } static void nvmem_release_cache(void) { /* Done with shared memory buffer, release it. */ shared_mem_release(cache_base_ptr); /* Inidicate cache is not available */ cache_base_ptr = NULL; /* TODO Release mutex lock here crosbug.com/p/52520 */ } static int nvmem_is_unitialized(void) { int n; int ret; uint32_t *p_nvmem; struct nvmem_partition *p_part; /* Point to start of Nv Memory */ p_nvmem = (uint32_t *)CONFIG_FLASH_NVMEM_BASE; /* Verify that each byte is 0xff (4 bytes at a time) */ for (n = 0; n < (CONFIG_FLASH_NVMEM_SIZE >> 2); n++) if (p_nvmem[n] != 0xffffffff) return EC_ERROR_CRC; /* * NvMem is fully unitialized. Need to initialize tag and write tag to * flash so at least 1 partition is ready to be used. */ nvmem_act_partition = 0; /* Need to acquire the shared memory buffer */ ret = nvmem_update_cache_ptr(); if (ret != EC_SUCCESS) return ret; p_part = (struct nvmem_partition *)cache_base_ptr; /* Start with version 0 */ p_part->tag.version = 0; /* Compute sha with updated tag */ nvmem_compute_sha(&cache_base_ptr[NVMEM_SHA_SIZE], NVMEM_PARTITION_SIZE - NVMEM_SHA_SIZE, p_part->tag.sha, NVMEM_SHA_SIZE); /* * Partition 0 is initialized, write tag only to flash. Since the * partition was just verified to be fully erased, can just do write * operation. */ if (flash_physical_write(CONFIG_FLASH_NVMEM_OFFSET, sizeof(struct nvmem_tag), cache_base_ptr)) { CPRINTF("%s:%d\n", __func__, __LINE__); nvmem_release_cache(); return EC_ERROR_UNKNOWN; } /* Can release the cache buffer now */ nvmem_release_cache(); return EC_SUCCESS; } static int nvmem_compare_version(void) { struct nvmem_partition *p_part; uint16_t ver0, ver1; uint32_t delta; p_part = (struct nvmem_partition *)CONFIG_FLASH_NVMEM_BASE; ver0 = p_part->tag.version; p_part++; ver1 = p_part->tag.version; /* Compute version difference accounting for wrap condition */ delta = (ver0 - ver1 + (1< NVMEM_PARTITION_SIZE) return EC_ERROR_OVERFLOW; return EC_SUCCESS; } static int nvmem_get_partition_off(int user, uint32_t offset, uint32_t len, uint32_t *p_buf_offset) { uint32_t start_offset; /* Sanity check for user */ if (user >= NVMEM_NUM_USERS) return EC_ERROR_OVERFLOW; /* Get offset within the partition for the start of user buffer */ start_offset = nvmem_user_start_offset[user]; /* * Ensure that read/write operation that is calling this function * doesn't exceed the end of its buffer. */ if (offset + len > nvmem_user_sizes[user]) return EC_ERROR_OVERFLOW; /* Compute offset within the partition for the rd/wr operation */ *p_buf_offset = start_offset + offset; return EC_SUCCESS; } int nvmem_setup(uint8_t starting_version) { struct nvmem_partition *p_part; int part; int ret; CPRINTS("Configuring NVMEM FLash Partition"); /* * Initialize NVmem partition. This function will only be called * if during nvmem_init() fails which implies that NvMem is not fully * erased and neither partion tag contains a valid sha meaning they are * both corrupted */ for (part = 0; part < NVMEM_NUM_PARTITIONS; part++) { /* Set active partition variable */ nvmem_act_partition = part; /* Get the cache buffer */ if (nvmem_update_cache_ptr() != EC_SUCCESS) { CPRINTF("NvMem: Cache ram not available!\n"); return EC_ERROR_TIMEOUT; } /* Fill in tag info */ p_part = (struct nvmem_partition *)cache_base_ptr; /* Commit function will increment version number */ p_part->tag.version = starting_version + part - 1; nvmem_compute_sha(&cache_base_ptr[NVMEM_SHA_SIZE], NVMEM_PARTITION_SIZE - NVMEM_SHA_SIZE, p_part->tag.sha, NVMEM_SHA_SIZE); /* * TODO: Should erase parition area prior to this function being * called, or could write all user buffer data to 0xff here * before the commit() call. */ /* Partition is now ready, write it to flash. */ ret = nvmem_commit(); if (ret != EC_SUCCESS) return ret; } return EC_SUCCESS; } int nvmem_init(void) { int ret; /* Generate start offsets within partiion for user buffers */ ret = nvmem_generate_offset_table(); if (ret) { CPRINTF("%s:%d\n", __func__, __LINE__); return ret; } /* Initialize error state, assume everything is good */ nvmem_error_state = EC_SUCCESS; /* Default state for cache_base_ptr */ cache_base_ptr = NULL; ret = nvmem_find_partition(); if (ret != EC_SUCCESS) { /* Change error state to non-zero */ nvmem_error_state = EC_ERROR_UNKNOWN; CPRINTF("%s:%d\n", __func__, __LINE__); return ret; } CPRINTS("Active NVram partition set to %d", nvmem_act_partition); return EC_SUCCESS; } int nvmem_get_error_state(void) { return nvmem_error_state; } int nvmem_is_different(uint32_t offset, uint32_t size, void *data, enum nvmem_users user) { int ret; uint8_t *p_src; uintptr_t src_addr; uint32_t src_offset; /* Point to either NvMem flash or ram if that's active */ if (cache_base_ptr == NULL) src_addr = CONFIG_FLASH_NVMEM_BASE + nvmem_act_partition * NVMEM_PARTITION_SIZE; else src_addr = (uintptr_t)cache_base_ptr; /* Get partition offset for this read operation */ ret = nvmem_get_partition_off(user, offset, size, &src_offset); if (ret != EC_SUCCESS) return ret; /* Advance to the correct byte within the data buffer */ src_addr += src_offset; p_src = (uint8_t *)src_addr; /* Compare NvMem with data */ return memcmp(p_src, data, size); } int nvmem_read(uint32_t offset, uint32_t size, void *data, enum nvmem_users user) { int ret; uint8_t *p_src; uintptr_t src_addr; uint32_t src_offset; /* Point to either NvMem flash or ram if that's active */ if (cache_base_ptr == NULL) src_addr = CONFIG_FLASH_NVMEM_BASE + nvmem_act_partition * NVMEM_PARTITION_SIZE; else src_addr = (uintptr_t)cache_base_ptr; /* Get partition offset for this read operation */ ret = nvmem_get_partition_off(user, offset, size, &src_offset); if (ret != EC_SUCCESS) return ret; /* Advance to the correct byte within the data buffer */ src_addr += src_offset; p_src = (uint8_t *)src_addr; /* Copy from src into the caller's destination buffer */ memcpy(data, p_src, size); return EC_SUCCESS; } int nvmem_write(uint32_t offset, uint32_t size, void *data, enum nvmem_users user) { int ret; uint8_t *p_dest; uintptr_t dest_addr; uint32_t dest_offset; /* Make sure that the cache buffer is active */ ret = nvmem_update_cache_ptr(); if (ret) /* TODO: What to do when can't access cache buffer? */ return ret; /* Compute partition offset for this write operation */ ret = nvmem_get_partition_off(user, offset, size, &dest_offset); if (ret != EC_SUCCESS) return ret; /* Advance to correct offset within data buffer */ dest_addr = (uintptr_t)cache_base_ptr; dest_addr += dest_offset; p_dest = (uint8_t *)dest_addr; /* Copy data from caller into destination buffer */ memcpy(p_dest, data, size); return EC_SUCCESS; } int nvmem_move(uint32_t src_offset, uint32_t dest_offset, uint32_t size, enum nvmem_users user) { int ret; uint8_t *p_src, *p_dest; uintptr_t base_addr; uint32_t s_buff_offset, d_buff_offset; /* Make sure that the cache buffer is active */ ret = nvmem_update_cache_ptr(); if (ret) /* TODO: What to do when can't access cache buffer? */ return ret; /* Compute partition offset for source */ ret = nvmem_get_partition_off(user, src_offset, size, &s_buff_offset); if (ret != EC_SUCCESS) return ret; /* Compute partition offset for destination */ ret = nvmem_get_partition_off(user, dest_offset, size, &d_buff_offset); if (ret != EC_SUCCESS) return ret; base_addr = (uintptr_t)cache_base_ptr; /* Create pointer to src location within partition */ p_src = (uint8_t *)(base_addr + s_buff_offset); /* Create pointer to dest location within partition */ p_dest = (uint8_t *)(base_addr + d_buff_offset); /* Move the data block in NvMem */ memmove(p_dest, p_src, size); return EC_SUCCESS; } int nvmem_commit(void) { int nvmem_offset; int new_active_partition; uint16_t version; struct nvmem_partition *p_part; /* * All scratch buffer blocks must be written to physical flash * memory. In addition, the scratch block buffer index table * entries must be reset along with the index itself. */ /* Update version number */ if (cache_base_ptr == NULL) { CPRINTF("%s:%d\n", __func__, __LINE__); return EC_ERROR_UNKNOWN; } p_part = (struct nvmem_partition *)cache_base_ptr; version = p_part->tag.version + 1; /* Check for restricted version number */ if (version == NVMEM_VERSION_MASK) version = 0; p_part->tag.version = version; /* Update the sha */ nvmem_compute_sha(&cache_base_ptr[NVMEM_SHA_SIZE], NVMEM_PARTITION_SIZE - NVMEM_SHA_SIZE, p_part->tag.sha, NVMEM_SHA_SIZE); /* Toggle parition being used (always write to current spare) */ new_active_partition = nvmem_act_partition ^ 1; /* Point to first block within active partition */ nvmem_offset = CONFIG_FLASH_NVMEM_OFFSET + new_active_partition * NVMEM_PARTITION_SIZE; /* Write partition to NvMem */ /* Erase partition */ if (flash_physical_erase(nvmem_offset, NVMEM_PARTITION_SIZE)) { CPRINTF("%s:%d\n", __func__, __LINE__); /* Free up scratch buffers */ nvmem_release_cache(); return EC_ERROR_UNKNOWN; } /* Write partition */ if (flash_physical_write(nvmem_offset, NVMEM_PARTITION_SIZE, cache_base_ptr)) { CPRINTF("%s:%d\n", __func__, __LINE__); /* Free up scratch buffers */ nvmem_release_cache(); return EC_ERROR_UNKNOWN; } /* Free up scratch buffers */ nvmem_release_cache(); /* Update newest partition index */ nvmem_act_partition = new_active_partition; return EC_SUCCESS; }