/* Copyright (c) 2010 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. * * Functions for loading a kernel from disk. * (Firmware portion) */ #include "vboot_kernel.h" #include "boot_device.h" #include "cgptlib.h" #include "load_kernel_fw.h" #include "rollback_index.h" #include "utility.h" #include "vboot_common.h" #define KBUF_SIZE 65536 /* Bytes to read at start of kernel partition */ /* Allocates and reads GPT data from the drive. The sector_bytes and * drive_sectors fields should be filled on input. The primary and * secondary header and entries are filled on output. * * Returns 0 if successful, 1 if error. */ int AllocAndReadGptData(GptData* gptdata) { uint64_t entries_sectors = TOTAL_ENTRIES_SIZE / gptdata->sector_bytes; /* No data to be written yet */ gptdata->modified = 0; /* Allocate all buffers */ gptdata->primary_header = (uint8_t*)Malloc(gptdata->sector_bytes); gptdata->secondary_header = (uint8_t*)Malloc(gptdata->sector_bytes); gptdata->primary_entries = (uint8_t*)Malloc(TOTAL_ENTRIES_SIZE); gptdata->secondary_entries = (uint8_t*)Malloc(TOTAL_ENTRIES_SIZE); if (gptdata->primary_header == NULL || gptdata->secondary_header == NULL || gptdata->primary_entries == NULL || gptdata->secondary_entries == NULL) return 1; /* Read data from the drive, skipping the protective MBR */ if (0 != BootDeviceReadLBA(1, 1, gptdata->primary_header)) return 1; if (0 != BootDeviceReadLBA(2, entries_sectors, gptdata->primary_entries)) return 1; if (0 != BootDeviceReadLBA(gptdata->drive_sectors - entries_sectors - 1, entries_sectors, gptdata->secondary_entries)) return 1; if (0 != BootDeviceReadLBA(gptdata->drive_sectors - 1, 1, gptdata->secondary_header)) return 1; return 0; } /* Writes any changes for the GPT data back to the drive, then frees * the buffers. * * Returns 0 if successful, 1 if error. */ int WriteAndFreeGptData(GptData* gptdata) { uint64_t entries_sectors = TOTAL_ENTRIES_SIZE / gptdata->sector_bytes; if (gptdata->primary_header) { if (gptdata->modified & GPT_MODIFIED_HEADER1) { debug("Updating GPT header 1\n"); if (0 != BootDeviceWriteLBA(1, 1, gptdata->primary_header)) return 1; } Free(gptdata->primary_header); } if (gptdata->primary_entries) { if (gptdata->modified & GPT_MODIFIED_ENTRIES1) { debug("Updating GPT entries 1\n"); if (0 != BootDeviceWriteLBA(2, entries_sectors, gptdata->primary_entries)) return 1; } Free(gptdata->primary_entries); } if (gptdata->secondary_entries) { if (gptdata->modified & GPT_MODIFIED_ENTRIES2) { debug("Updating GPT header 2\n"); if (0 != BootDeviceWriteLBA(gptdata->drive_sectors - entries_sectors - 1, entries_sectors, gptdata->secondary_entries)) return 1; } Free(gptdata->secondary_entries); } if (gptdata->secondary_header) { if (gptdata->modified & GPT_MODIFIED_HEADER2) { debug("Updating GPT entries 2\n"); if (0 != BootDeviceWriteLBA(gptdata->drive_sectors - 1, 1, gptdata->secondary_header)) return 1; } Free(gptdata->secondary_header); } /* Success */ return 0; } int LoadKernel(LoadKernelParams* params) { VbPublicKey* kernel_subkey = (VbPublicKey*)params->header_sign_key_blob; GptData gpt; uint64_t part_start, part_size; uint64_t blba = params->bytes_per_lba; uint64_t kbuf_sectors = KBUF_SIZE / blba; uint8_t* kbuf = NULL; int found_partitions = 0; int good_partition = -1; uint16_t tpm_key_version = 0; uint16_t tpm_kernel_version = 0; uint64_t lowest_key_version = 0xFFFF; uint64_t lowest_kernel_version = 0xFFFF; int is_dev = ((BOOT_FLAG_DEVELOPER & params->boot_flags) && !(BOOT_FLAG_RECOVERY & params->boot_flags)); int is_normal = (!(BOOT_FLAG_DEVELOPER & params->boot_flags) && !(BOOT_FLAG_RECOVERY & params->boot_flags)); /* Clear output params in case we fail */ params->partition_number = 0; params->bootloader_address = 0; params->bootloader_size = 0; /* Set up TPM; required in all modes */ if (0 != SetupTPM( ((BOOT_FLAG_RECOVERY & params->boot_flags) ? RO_RECOVERY_MODE : RW_NORMAL_MODE), ((BOOT_FLAG_DEVELOPER & params->boot_flags) ? 1 : 0))) { debug("Error setting up TPM\n"); return LOAD_KERNEL_RECOVERY; } if (is_normal) { /* Read current kernel key index from TPM. Assumes TPM is already * initialized. */ if (0 != GetStoredVersions(KERNEL_VERSIONS, &tpm_key_version, &tpm_kernel_version)) { debug("Unable to get stored version from TPM\n"); return LOAD_KERNEL_RECOVERY; } } else if (is_dev) { /* In developer mode, we ignore the kernel subkey, and just use * the SHA-512 hash to verify the key block. */ kernel_subkey = NULL; } do { /* Read GPT data */ gpt.sector_bytes = (uint32_t)blba; gpt.drive_sectors = params->ending_lba + 1; if (0 != AllocAndReadGptData(&gpt)) { debug("Unable to read GPT data\n"); break; } /* Initialize GPT library */ if (GPT_SUCCESS != GptInit(&gpt)) { debug("Error parsing GPT\n"); break; } /* Allocate kernel header buffers */ kbuf = (uint8_t*)Malloc(KBUF_SIZE); if (!kbuf) break; /* Loop over candidate kernel partitions */ while (GPT_SUCCESS == GptNextKernelEntry(&gpt, &part_start, &part_size)) { VbKeyBlockHeader* key_block; VbKernelPreambleHeader* preamble; RSAPublicKey* data_key; uint64_t key_version; uint64_t body_offset; debug("Found kernel entry at %" PRIu64 " size %" PRIu64 "\n", part_start, part_size); /* Found at least one kernel partition. */ found_partitions++; /* Read the first part of the kernel partition */ if (part_size < kbuf_sectors) continue; if (0 != BootDeviceReadLBA(part_start, kbuf_sectors, kbuf)) continue; /* Verify the key block */ key_block = (VbKeyBlockHeader*)kbuf; if ((0 != KeyBlockVerify(key_block, KBUF_SIZE, kernel_subkey))) { debug("Verifying key block failed.\n"); continue; } /* Check the key block flags against the current boot mode */ if (!(key_block->key_block_flags && ((BOOT_FLAG_DEVELOPER & params->boot_flags) ? KEY_BLOCK_FLAG_DEVELOPER_1 : KEY_BLOCK_FLAG_DEVELOPER_0))) { debug("Developer flag mismatch.\n"); continue; } if (!(key_block->key_block_flags && ((BOOT_FLAG_RECOVERY & params->boot_flags) ? KEY_BLOCK_FLAG_RECOVERY_1 : KEY_BLOCK_FLAG_RECOVERY_0))) { debug("Recovery flag mismatch.\n"); continue; } /* Check for rollback of key version. Note this is implicitly * skipped in recovery and developer modes because those set * key_version=0 above. */ key_version = key_block->data_key.key_version; if (key_version < tpm_key_version) { debug("Key version too old.\n"); continue; } /* Get the key for preamble/data verification from the key block */ data_key = PublicKeyToRSA(&key_block->data_key); if (!data_key) continue; /* Verify the preamble, which follows the key block */ preamble = (VbKernelPreambleHeader*)(kbuf + key_block->key_block_size); if ((0 != VerifyKernelPreamble2(preamble, KBUF_SIZE - key_block->key_block_size, data_key))) { debug("Preamble verification failed.\n"); RSAPublicKeyFree(data_key); continue; } /* Check for rollback of kernel version. Note this is implicitly * skipped in recovery and developer modes because those set * key_version=0 and kernel_version=0 above. */ if (key_version == tpm_key_version && preamble->kernel_version < tpm_kernel_version) { debug("Kernel version too low.\n"); RSAPublicKeyFree(data_key); continue; } debug("Kernel preamble is good.\n"); /* Check for lowest key version from a valid header. */ if (lowest_key_version > key_version) { lowest_key_version = key_version; lowest_kernel_version = preamble->kernel_version; } else if (lowest_key_version == key_version && lowest_kernel_version > preamble->kernel_version) { lowest_kernel_version = preamble->kernel_version; } /* If we already have a good kernel, no need to read another * one; we only needed to look at the versions to check for * rollback. */ if (-1 != good_partition) continue; /* Verify body load address matches what we expect */ if ((preamble->body_load_address != (size_t)params->kernel_buffer) && !(params->boot_flags & BOOT_FLAG_SKIP_ADDR_CHECK)) { debug("Wrong body load address.\n"); RSAPublicKeyFree(data_key); continue; } /* Verify kernel body starts at a multiple of the sector size. */ body_offset = key_block->key_block_size + preamble->preamble_size; if (0 != body_offset % blba) { debug("Kernel body not at multiple of sector size.\n"); RSAPublicKeyFree(data_key); continue; } /* Verify kernel body fits in the partition */ if (body_offset + preamble->body_signature.data_size > part_size * blba) { debug("Kernel body doesn't fit in partition.\n"); RSAPublicKeyFree(data_key); continue; } /* Read the kernel data */ if (0 != BootDeviceReadLBA( part_start + (body_offset / blba), (preamble->body_signature.data_size + blba - 1) / blba, params->kernel_buffer)) { debug("Unable to read kernel data.\n"); RSAPublicKeyFree(data_key); continue; } /* Verify kernel data */ if (0 != VerifyData((const uint8_t*)params->kernel_buffer, &preamble->body_signature, data_key)) { debug("Kernel data verification failed.\n"); RSAPublicKeyFree(data_key); continue; } /* Done with the kernel signing key, so can free it now */ RSAPublicKeyFree(data_key); /* If we're still here, the kernel is valid. */ /* Save the first good partition we find; that's the one we'll boot */ debug("Partiton is good.\n"); /* TODO: GPT partitions start at 1, but cgptlib starts them at 0. * Adjust here, until cgptlib is fixed. */ good_partition = gpt.current_kernel + 1; params->partition_number = gpt.current_kernel; params->bootloader_address = preamble->bootloader_address; params->bootloader_size = preamble->bootloader_size; /* If we're in developer or recovery mode, there's no rollback * protection, so we can stop at the first valid kernel. */ if (!is_normal) { debug("Boot_flags = !is_normal\n"); break; } /* Otherwise, we're in normal boot mode, so we do care about the * key index in the TPM. If the good partition's key version is * the same as the tpm, then the TPM doesn't need updating; we * can stop now. Otherwise, we'll check all the other headers * to see if they contain a newer key. */ if (key_version == tpm_key_version && preamble->kernel_version == tpm_kernel_version) { debug("Same key version\n"); break; } } /* while(GptNextKernelEntry) */ } while(0); /* Free kernel buffer */ if (kbuf) Free(kbuf); /* Write and free GPT data */ WriteAndFreeGptData(&gpt); /* Handle finding a good partition */ if (good_partition >= 0) { debug("Good_partition >= 0\n"); /* See if we need to update the TPM */ if (is_normal) { /* We only update the TPM in normal boot mode. In developer * mode, the kernel is self-signed by the developer, so we can't * trust the key version and wouldn't want to roll the TPM * forward. In recovery mode, the TPM stays PP-unlocked, so * anything we write gets blown away by the firmware when we go * back to normal mode. */ debug("Boot_flags = is_normal\n"); if ((lowest_key_version > tpm_key_version) || (lowest_key_version == tpm_key_version && lowest_kernel_version > tpm_kernel_version)) { if (0 != WriteStoredVersions(KERNEL_VERSIONS, (uint16_t)lowest_key_version, (uint16_t)lowest_kernel_version)) return LOAD_KERNEL_RECOVERY; } } if (!(BOOT_FLAG_RECOVERY & params->boot_flags)) { /* We can lock the TPM now, since we've decided which kernel we * like. If we don't find a good kernel, we leave the TPM * unlocked so we can try again on the next boot device. If no * kernels are good, we'll reboot to recovery mode, so it's ok to * leave the TPM unlocked in that case too. * * If we're already in recovery mode, we need to leave PP unlocked, * so don't lock the kernel versions. */ debug("Lock kernel versions\n"); if (0 != LockKernelVersionsByLockingPP()) return LOAD_KERNEL_RECOVERY; } /* Success! */ return LOAD_KERNEL_SUCCESS; } // Handle error cases if (found_partitions) return LOAD_KERNEL_INVALID; else return LOAD_KERNEL_NOT_FOUND; }