Files
OpenCellular/board/kevin/board.c
Aseda Aboagye 34a97f50d5 buttons: Make buttons[] common.
Nearly every board had a buttons array defined in which its contents had
the standard volume buttons.  This commit creates a single common
buttons array that can contain the standard volume buttons and recovery
buttons.  If a board has volume up and down buttons, they can simply
define CONFIG_VOLUME_BUTTONS and it will populate the buttons array with
the standard definition.  The buttons are active low and have a 30 ms
debounce period.  Similiarly, if a board has a dedicated recovery
button, defining CONFIG_DEDICATED_RECOVERY_BUTTON will also populate the
buttons array with a recovery button.

BUG=chromium:783371
BRANCH=None
TEST=make -j buildall.
TEST=Flash a device with CONFIG_VOLUME_BUTTONS, verify pressing volume
buttons still work.

Change-Id: Ie5d63670ca4c6b146ec8ffb64d40ea9ce437b913
Signed-off-by: Aseda Aboagye <aaboagye@google.com>
Reviewed-on: https://chromium-review.googlesource.com/773794
Commit-Ready: Aseda Aboagye <aaboagye@chromium.org>
Tested-by: Aseda Aboagye <aaboagye@chromium.org>
Reviewed-by: Daisuke Nojiri <dnojiri@chromium.org>
Reviewed-by: Shawn N <shawnn@chromium.org>
2017-11-17 20:18:38 -08:00

719 lines
19 KiB
C

/* Copyright 2016 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "adc.h"
#include "adc_chip.h"
#include "als.h"
#include "backlight.h"
#include "button.h"
#include "charge_manager.h"
#include "charge_state.h"
#include "charger.h"
#include "chipset.h"
#include "common.h"
#include "console.h"
#include "ec_commands.h"
#include "driver/accel_bma2x2.h"
#include "driver/accel_kionix.h"
#include "driver/accel_kx022.h"
#include "driver/accelgyro_bmi160.h"
#include "driver/als_opt3001.h"
#include "driver/baro_bmp280.h"
#include "driver/charger/bd9995x.h"
#include "driver/tcpm/fusb302.h"
#include "extpower.h"
#include "gpio.h"
#include "hooks.h"
#include "host_command.h"
#include "i2c.h"
#include "keyboard_scan.h"
#include "lid_switch.h"
#include "power.h"
#include "power_button.h"
#include "pwm.h"
#include "pwm_chip.h"
#include "registers.h"
#include "shi_chip.h"
#include "spi.h"
#include "switch.h"
#include "system.h"
#include "task.h"
#include "tcpm.h"
#include "timer.h"
#include "thermal.h"
#include "usb_charge.h"
#include "usb_mux.h"
#include "usb_pd_tcpm.h"
#include "util.h"
#define CPRINTS(format, args...) cprints(CC_USBCHARGE, format, ## args)
#define CPRINTF(format, args...) cprintf(CC_USBCHARGE, format, ## args)
static void tcpc_alert_event(enum gpio_signal signal)
{
#ifdef HAS_TASK_PDCMD
/* Exchange status with TCPCs */
host_command_pd_send_status(PD_CHARGE_NO_CHANGE);
#endif
}
static void overtemp_interrupt(enum gpio_signal signal)
{
CPRINTS("AP wants shutdown");
chipset_force_shutdown();
}
static void warm_reset_request_interrupt(enum gpio_signal signal)
{
CPRINTS("AP wants warm reset");
chipset_reset(0);
}
#include "gpio_list.h"
/******************************************************************************/
/* ADC channels. Must be in the exactly same order as in enum adc_channel. */
const struct adc_t adc_channels[] = {
[ADC_BOARD_ID] = {
"BOARD_ID", NPCX_ADC_CH0, ADC_MAX_VOLT, ADC_READ_MAX+1, 0 },
[ADC_PP900_AP] = {
"PP900_AP", NPCX_ADC_CH1, ADC_MAX_VOLT, ADC_READ_MAX+1, 0 },
[ADC_PP1200_LPDDR] = {
"PP1200_LPDDR", NPCX_ADC_CH2, ADC_MAX_VOLT, ADC_READ_MAX+1, 0 },
[ADC_PPVAR_CLOGIC] = {
"PPVAR_CLOGIC",
NPCX_ADC_CH3, ADC_MAX_VOLT, ADC_READ_MAX+1, 0 },
[ADC_PPVAR_LOGIC] = {
"PPVAR_LOGIC", NPCX_ADC_CH4, ADC_MAX_VOLT, ADC_READ_MAX+1, 0 },
};
BUILD_ASSERT(ARRAY_SIZE(adc_channels) == ADC_CH_COUNT);
/******************************************************************************/
/* PWM channels. Must be in the exactly same order as in enum pwm_channel. */
const struct pwm_t pwm_channels[] = {
#ifdef BOARD_KEVIN
[PWM_CH_LED_GREEN] = { 0, PWM_CONFIG_DSLEEP, 100 },
#endif
#ifdef BOARD_KEVIN
[PWM_CH_DISPLIGHT] = { 2, 0, 210 },
#else
/* ArcticSand part on Gru requires >= 2.6KHz */
[PWM_CH_DISPLIGHT] = { 2, 0, 2600 },
#endif
[PWM_CH_LED_RED] = { 3, PWM_CONFIG_DSLEEP, 100 },
#ifdef BOARD_KEVIN
[PWM_CH_LED_BLUE] = { 4, PWM_CONFIG_DSLEEP, 100 },
#endif
};
BUILD_ASSERT(ARRAY_SIZE(pwm_channels) == PWM_CH_COUNT);
/******************************************************************************/
/* I2C ports */
const struct i2c_port_t i2c_ports[] = {
{"tcpc0", NPCX_I2C_PORT0_0, 1000, GPIO_I2C0_SCL0, GPIO_I2C0_SDA0},
{"tcpc1", NPCX_I2C_PORT0_1, 1000, GPIO_I2C0_SCL1, GPIO_I2C0_SDA1},
{"sensors", NPCX_I2C_PORT1, 400, GPIO_I2C1_SCL, GPIO_I2C1_SDA},
{"charger", NPCX_I2C_PORT2, 400, GPIO_I2C2_SCL, GPIO_I2C2_SDA},
{"battery", NPCX_I2C_PORT3, 100, GPIO_I2C3_SCL, GPIO_I2C3_SDA},
};
const unsigned int i2c_ports_used = ARRAY_SIZE(i2c_ports);
/* power signal list. Must match order of enum power_signal. */
const struct power_signal_info power_signal_list[] = {
{GPIO_PP5000_PG, POWER_SIGNAL_ACTIVE_HIGH, "PP5000_PWR_GOOD"},
{GPIO_TPS65261_PG, POWER_SIGNAL_ACTIVE_HIGH, "SYS_PWR_GOOD"},
{GPIO_AP_CORE_PG, POWER_SIGNAL_ACTIVE_HIGH, "AP_PWR_GOOD"},
{GPIO_AP_EC_S3_S0_L, POWER_SIGNAL_ACTIVE_LOW, "SUSPEND_DEASSERTED"},
};
BUILD_ASSERT(ARRAY_SIZE(power_signal_list) == POWER_SIGNAL_COUNT);
/******************************************************************************/
/* SPI devices */
const struct spi_device_t spi_devices[] = {
{ CONFIG_SPI_ACCEL_PORT, 1, GPIO_SPI_SENSOR_CS_L }
};
const unsigned int spi_devices_used = ARRAY_SIZE(spi_devices);
/******************************************************************************/
/* Wake-up pins for hibernate */
const enum gpio_signal hibernate_wake_pins[] = {
GPIO_POWER_BUTTON_L, GPIO_CHARGER_INT_L, GPIO_LID_OPEN
};
const int hibernate_wake_pins_used = ARRAY_SIZE(hibernate_wake_pins);
/******************************************************************************/
/* Keyboard scan setting */
struct keyboard_scan_config keyscan_config = {
#ifdef BOARD_KEVIN
.output_settle_us = 40,
#else
/* Extra delay when KSO2 is tied to cr50 */
.output_settle_us = 60,
#endif
.debounce_down_us = 6 * MSEC,
.debounce_up_us = 30 * MSEC,
.scan_period_us = 1500,
.min_post_scan_delay_us = 1000,
.poll_timeout_us = SECOND,
.actual_key_mask = {
0x14, 0xff, 0xff, 0xff, 0xff, 0xf5, 0xff,
0xa4, 0xff, 0xfe, 0x55, 0xfa, 0xc8 /* full set with lock key */
},
};
const struct tcpc_config_t tcpc_config[CONFIG_USB_PD_PORT_COUNT] = {
{I2C_PORT_TCPC0, FUSB302_I2C_SLAVE_ADDR, &fusb302_tcpm_drv},
{I2C_PORT_TCPC1, FUSB302_I2C_SLAVE_ADDR, &fusb302_tcpm_drv},
};
struct usb_mux usb_muxes[CONFIG_USB_PD_PORT_COUNT] = {
{
.port_addr = 0,
.driver = &virtual_usb_mux_driver,
.hpd_update = &virtual_hpd_update,
},
{
.port_addr = 1,
.driver = &virtual_usb_mux_driver,
.hpd_update = &virtual_hpd_update,
},
};
void board_reset_pd_mcu(void)
{
}
uint16_t tcpc_get_alert_status(void)
{
uint16_t status = 0;
if (!gpio_get_level(GPIO_USB_C0_PD_INT_L))
status |= PD_STATUS_TCPC_ALERT_0;
if (!gpio_get_level(GPIO_USB_C1_PD_INT_L))
status |= PD_STATUS_TCPC_ALERT_1;
return status;
}
int board_set_active_charge_port(int charge_port)
{
enum bd9995x_charge_port bd9995x_port;
int bd9995x_port_select = 1;
switch (charge_port) {
case 0: case 1:
/* Don't charge from a source port */
if (board_vbus_source_enabled(charge_port))
return -1;
bd9995x_port = charge_port;
break;
case CHARGE_PORT_NONE:
bd9995x_port_select = 0;
bd9995x_port = BD9995X_CHARGE_PORT_BOTH;
break;
default:
panic("Invalid charge port\n");
break;
}
CPRINTS("New chg p%d", charge_port);
return bd9995x_select_input_port(bd9995x_port, bd9995x_port_select);
}
void board_set_charge_limit(int port, int supplier, int charge_ma,
int max_ma, int charge_mv)
{
charge_set_input_current_limit(MAX(charge_ma,
CONFIG_CHARGER_INPUT_CURRENT), charge_mv);
}
int extpower_is_present(void)
{
int port;
int p0_src = board_vbus_source_enabled(0);
int p1_src = board_vbus_source_enabled(1);
/*
* The charger will indicate VBUS presence if we're sourcing 5V,
* so exclude such ports.
*/
if (p0_src && p1_src)
return 0;
else if (!p0_src && !p1_src)
port = BD9995X_CHARGE_PORT_BOTH;
else
port = p0_src;
return bd9995x_is_vbus_provided(port);
}
int pd_snk_is_vbus_provided(int port)
{
if (port != 0 && port != 1)
panic("Invalid charge port\n");
return bd9995x_is_vbus_provided(port);
}
static void board_spi_enable(void)
{
spi_enable(CONFIG_SPI_ACCEL_PORT, 1);
}
DECLARE_HOOK(HOOK_CHIPSET_STARTUP,
board_spi_enable,
MOTION_SENSE_HOOK_PRIO - 1);
static void board_spi_disable(void)
{
spi_enable(CONFIG_SPI_ACCEL_PORT, 0);
}
DECLARE_HOOK(HOOK_CHIPSET_SHUTDOWN,
board_spi_disable,
MOTION_SENSE_HOOK_PRIO + 1);
/*
* Reset our charger IC on power-on. This will briefly cut extpower to the
* system, so skip the reset if our battery can't provide sufficient charge
* to briefly power the system.
* TODO(shawnn): Move to common code.
*/
static void board_reset_charger(void)
{
int bat_pct = 0;
if (!system_jumped_to_this_image() &&
battery_is_present() == BP_YES &&
battery_get_disconnect_state() != BATTERY_DISCONNECTED) {
if (battery_state_of_charge_abs(&bat_pct) ||
bat_pct < CONFIG_CHARGER_MIN_BAT_PCT_FOR_POWER_ON)
return;
charger_set_mode(CHARGE_FLAG_POR_RESET);
}
}
DECLARE_HOOK(HOOK_INIT, board_reset_charger, HOOK_PRIO_INIT_EXTPOWER - 1);
static void board_init(void)
{
/* Enable TCPC alert interrupts */
gpio_enable_interrupt(GPIO_USB_C0_PD_INT_L);
gpio_enable_interrupt(GPIO_USB_C1_PD_INT_L);
/* Enable charger interrupt for BC1.2 detection on attach / detach */
gpio_enable_interrupt(GPIO_CHARGER_INT_L);
/* Enable reboot / shutdown control inputs from AP */
gpio_enable_interrupt(GPIO_WARM_RESET_REQ);
gpio_enable_interrupt(GPIO_AP_OVERTEMP);
/* Enable interrupts from BMI160 sensor. */
gpio_enable_interrupt(GPIO_BASE_SIXAXIS_INT_L);
/* Sensor Init */
if (system_jumped_to_this_image() && chipset_in_state(CHIPSET_STATE_ON))
board_spi_enable();
}
DECLARE_HOOK(HOOK_INIT, board_init, HOOK_PRIO_DEFAULT);
void board_hibernate(void)
{
int i;
int rv;
/*
* Disable the power enables for the TCPCs since we're going into
* hibernate. The charger VBUS interrupt will wake us up and reset the
* EC. Upon init, we'll reinitialize the TCPCs to be at full power.
*/
CPRINTS("Set TCPCs to low power");
for (i = 0; i < CONFIG_USB_PD_PORT_COUNT; i++) {
rv = tcpc_write(i, TCPC_REG_POWER, TCPC_REG_POWER_PWR_LOW);
if (rv)
CPRINTS("Error setting TCPC %d", i);
}
cflush();
}
enum kevin_board_version {
BOARD_VERSION_UNKNOWN = -1,
BOARD_VERSION_REV0 = 0,
BOARD_VERSION_REV1 = 1,
BOARD_VERSION_REV2 = 2,
BOARD_VERSION_REV3 = 3,
BOARD_VERSION_REV4 = 4,
BOARD_VERSION_REV5 = 5,
BOARD_VERSION_REV6 = 6,
BOARD_VERSION_REV7 = 7,
BOARD_VERSION_REV8 = 8,
BOARD_VERSION_REV9 = 9,
BOARD_VERSION_REV10 = 10,
BOARD_VERSION_REV11 = 11,
BOARD_VERSION_REV12 = 12,
BOARD_VERSION_REV13 = 13,
BOARD_VERSION_REV14 = 14,
BOARD_VERSION_REV15 = 15,
BOARD_VERSION_COUNT,
};
struct {
enum kevin_board_version version;
int expect_mv;
} const kevin_boards[] = {
{ BOARD_VERSION_REV0, 109 }, /* 51.1K , 2.2K(gru 3.3K) ohm */
{ BOARD_VERSION_REV1, 211 }, /* 51.1k , 6.8K ohm */
{ BOARD_VERSION_REV2, 319 }, /* 51.1K , 11K ohm */
{ BOARD_VERSION_REV3, 427 }, /* 56K , 17.4K ohm */
{ BOARD_VERSION_REV4, 542 }, /* 51.1K , 22K ohm */
{ BOARD_VERSION_REV5, 666 }, /* 51.1K , 30K ohm */
{ BOARD_VERSION_REV6, 781 }, /* 51.1K , 39.2K ohm */
{ BOARD_VERSION_REV7, 900 }, /* 56K , 56K ohm */
{ BOARD_VERSION_REV8, 1023 }, /* 47K , 61.9K ohm */
{ BOARD_VERSION_REV9, 1137 }, /* 47K , 80.6K ohm */
{ BOARD_VERSION_REV10, 1240 }, /* 56K , 124K ohm */
{ BOARD_VERSION_REV11, 1343 }, /* 51.1K , 150K ohm */
{ BOARD_VERSION_REV12, 1457 }, /* 47K , 200K ohm */
{ BOARD_VERSION_REV13, 1576 }, /* 47K , 330K ohm */
{ BOARD_VERSION_REV14, 1684 }, /* 47K , 680K ohm */
{ BOARD_VERSION_REV15, 1800 }, /* 56K , NC */
};
BUILD_ASSERT(ARRAY_SIZE(kevin_boards) == BOARD_VERSION_COUNT);
#define THRESHOLD_MV 56 /* Simply assume 1800/16/2 */
int board_get_version(void)
{
static int version = BOARD_VERSION_UNKNOWN;
int mv;
int i;
if (version != BOARD_VERSION_UNKNOWN)
return version;
gpio_set_level(GPIO_EC_BOARD_ID_EN_L, 0);
/* Wait to allow cap charge */
msleep(10);
mv = adc_read_channel(ADC_BOARD_ID);
/* TODO(crosbug.com/p/54971): Fix failure on first ADC conversion. */
if (mv == ADC_READ_ERROR)
mv = adc_read_channel(ADC_BOARD_ID);
gpio_set_level(GPIO_EC_BOARD_ID_EN_L, 1);
for (i = 0; i < BOARD_VERSION_COUNT; ++i) {
if (mv < kevin_boards[i].expect_mv + THRESHOLD_MV) {
version = kevin_boards[i].version;
break;
}
}
return version;
}
/* Mutexes */
static struct mutex g_base_mutex;
static struct mutex g_lid_mutex;
static struct bmi160_drv_data_t g_bmi160_data;
#ifdef BOARD_KEVIN
/* BMA255 private data */
static struct bma2x2_accel_data g_bma255_data;
/* Matrix to rotate accelrator into standard reference frame */
const matrix_3x3_t base_standard_ref = {
{ 0, FLOAT_TO_FP(1), 0},
{ FLOAT_TO_FP(1), 0, 0},
{ 0, 0, FLOAT_TO_FP(-1)}
};
const matrix_3x3_t lid_standard_ref = {
{ 0, FLOAT_TO_FP(1), 0},
{ FLOAT_TO_FP(-1), 0, 0},
{ 0, 0, FLOAT_TO_FP(1)}
};
#else
/* Matrix to rotate accelerometer into standard reference frame */
const matrix_3x3_t base_standard_ref = {
{ FLOAT_TO_FP(-1), 0, 0},
{ 0, FLOAT_TO_FP(1), 0},
{ 0, 0, FLOAT_TO_FP(-1)}
};
const matrix_3x3_t lid_standard_ref = {
{ 0, FLOAT_TO_FP(1), 0},
{ FLOAT_TO_FP(-1), 0, 0},
{ 0, 0, FLOAT_TO_FP(1)}
};
static struct kionix_accel_data g_kx022_data;
static struct bmp280_drv_data_t bmp280_drv_data;
/* ALS instances. Must be in same order as enum als_id. */
struct als_t als[] = {
/* FIXME(dhendrix): verify attenuation_factor */
{"TI", opt3001_init, opt3001_read_lux, 5},
};
BUILD_ASSERT(ARRAY_SIZE(als) == ALS_COUNT);
#endif /* BOARD_KEVIN */
struct motion_sensor_t motion_sensors[] = {
/*
* Note: bmi160: supports accelerometer and gyro sensor
* Requirement: accelerometer sensor must init before gyro sensor
* DO NOT change the order of the following table.
*/
[BASE_ACCEL] = {
.name = "Base Accel",
.active_mask = SENSOR_ACTIVE_S0_S3,
.chip = MOTIONSENSE_CHIP_BMI160,
.type = MOTIONSENSE_TYPE_ACCEL,
.location = MOTIONSENSE_LOC_BASE,
.drv = &bmi160_drv,
.mutex = &g_base_mutex,
.drv_data = &g_bmi160_data,
.port = CONFIG_SPI_ACCEL_PORT,
.addr = BMI160_SET_SPI_ADDRESS(CONFIG_SPI_ACCEL_PORT),
.rot_standard_ref = &base_standard_ref,
.default_range = 2, /* g, enough for laptop. */
.min_frequency = BMI160_ACCEL_MIN_FREQ,
.max_frequency = BMI160_ACCEL_MAX_FREQ,
.config = {
/* AP: by default use EC settings */
[SENSOR_CONFIG_AP] = {
.odr = 0,
.ec_rate = 0,
},
/* EC use accel for angle detection */
[SENSOR_CONFIG_EC_S0] = {
.odr = 10000 | ROUND_UP_FLAG,
.ec_rate = 100 * MSEC,
},
/* EC use accel for angle detection */
[SENSOR_CONFIG_EC_S3] = {
.odr = 10000 | ROUND_UP_FLAG,
.ec_rate = 0,
},
/* Sensor off in S3/S5 */
[SENSOR_CONFIG_EC_S5] = {
.odr = 0,
.ec_rate = 0
},
},
},
[BASE_GYRO] = {
.name = "Base Gyro",
.active_mask = SENSOR_ACTIVE_S0_S3,
.chip = MOTIONSENSE_CHIP_BMI160,
.type = MOTIONSENSE_TYPE_GYRO,
.location = MOTIONSENSE_LOC_BASE,
.drv = &bmi160_drv,
.mutex = &g_base_mutex,
.drv_data = &g_bmi160_data,
.port = CONFIG_SPI_ACCEL_PORT,
.addr = BMI160_SET_SPI_ADDRESS(CONFIG_SPI_ACCEL_PORT),
.default_range = 1000, /* dps */
#ifdef BOARD_KEVIN
.rot_standard_ref = &base_standard_ref,
#else
.rot_standard_ref = NULL, /* Identity matrix. */
#endif
.min_frequency = BMI160_GYRO_MIN_FREQ,
.max_frequency = BMI160_GYRO_MAX_FREQ,
.config = {
/* AP: by default shutdown all sensors */
[SENSOR_CONFIG_AP] = {
.odr = 0,
.ec_rate = 0,
},
/* EC does not need in S0 */
[SENSOR_CONFIG_EC_S0] = {
.odr = 0,
.ec_rate = 0,
},
/* Sensor off in S3/S5 */
[SENSOR_CONFIG_EC_S3] = {
.odr = 0,
.ec_rate = 0,
},
/* Sensor off in S3/S5 */
[SENSOR_CONFIG_EC_S5] = {
.odr = 0,
.ec_rate = 0,
},
},
},
#ifdef BOARD_KEVIN
[LID_ACCEL] = {
.name = "Lid Accel",
.active_mask = SENSOR_ACTIVE_S0_S3,
.chip = MOTIONSENSE_CHIP_BMA255,
.type = MOTIONSENSE_TYPE_ACCEL,
.location = MOTIONSENSE_LOC_LID,
.drv = &bma2x2_accel_drv,
.mutex = &g_lid_mutex,
.drv_data = &g_bma255_data,
.port = I2C_PORT_ACCEL,
.addr = BMA2x2_I2C_ADDR1,
.rot_standard_ref = &lid_standard_ref,
.default_range = 2, /* g, enough for laptop. */
.min_frequency = BMA255_ACCEL_MIN_FREQ,
.max_frequency = BMA255_ACCEL_MAX_FREQ,
.config = {
/* AP: by default use EC settings */
[SENSOR_CONFIG_AP] = {
.odr = 0,
.ec_rate = 0,
},
/* EC use accel for angle detection */
[SENSOR_CONFIG_EC_S0] = {
.odr = 10000 | ROUND_UP_FLAG,
.ec_rate = 0,
},
/* EC use accel for angle detection */
[SENSOR_CONFIG_EC_S3] = {
.odr = 10000 | ROUND_UP_FLAG,
.ec_rate = 0,
},
[SENSOR_CONFIG_EC_S5] = {
.odr = 0,
.ec_rate = 0,
},
},
},
#else
[LID_ACCEL] = {
.name = "Lid Accel",
.active_mask = SENSOR_ACTIVE_S0_S3,
.chip = MOTIONSENSE_CHIP_KX022,
.type = MOTIONSENSE_TYPE_ACCEL,
.location = MOTIONSENSE_LOC_LID,
.drv = &kionix_accel_drv,
.mutex = &g_lid_mutex,
.drv_data = &g_kx022_data,
.port = I2C_PORT_ACCEL,
.addr = KX022_ADDR0,
.rot_standard_ref = &lid_standard_ref,
.default_range = 2, /* g, enough for laptop. */
.min_frequency = KX022_ACCEL_MIN_FREQ,
.max_frequency = KX022_ACCEL_MAX_FREQ,
.config = {
/* AP: by default use EC settings */
[SENSOR_CONFIG_AP] = {
.odr = 0,
.ec_rate = 0,
},
/* EC use accel for angle detection */
[SENSOR_CONFIG_EC_S0] = {
.odr = 10000 | ROUND_UP_FLAG,
.ec_rate = 0,
},
/* EC use accel for angle detection */
[SENSOR_CONFIG_EC_S3] = {
.odr = 10000 | ROUND_UP_FLAG,
.ec_rate = 0,
},
[SENSOR_CONFIG_EC_S5] = {
.odr = 0,
.ec_rate = 0,
},
},
},
[BASE_BARO] = {
.name = "Base Baro",
.active_mask = SENSOR_ACTIVE_S0_S3,
.chip = MOTIONSENSE_CHIP_BMP280,
.type = MOTIONSENSE_TYPE_BARO,
.location = MOTIONSENSE_LOC_BASE,
.drv = &bmp280_drv,
.drv_data = &bmp280_drv_data,
.port = I2C_PORT_BARO,
.addr = BMP280_I2C_ADDRESS1,
.default_range = 1 << 18, /* 1bit = 4 Pa, 16bit ~= 2600 hPa */
.min_frequency = BMP280_BARO_MIN_FREQ,
.max_frequency = BMP280_BARO_MAX_FREQ,
.config = {
/* AP: by default shutdown all sensors */
[SENSOR_CONFIG_AP] = {
.odr = 0,
.ec_rate = 0,
},
/* EC does not need in S0 */
[SENSOR_CONFIG_EC_S0] = {
.odr = 0,
.ec_rate = 0,
},
/* Sensor off in S3/S5 */
[SENSOR_CONFIG_EC_S3] = {
.odr = 0,
.ec_rate = 0,
},
/* Sensor off in S3/S5 */
[SENSOR_CONFIG_EC_S5] = {
.odr = 0,
.ec_rate = 0,
},
},
},
#endif /* BOARD_KEVIN */
};
const unsigned int motion_sensor_count = ARRAY_SIZE(motion_sensors);
#ifndef TEST_BUILD
void lid_angle_peripheral_enable(int enable)
{
keyboard_scan_enable(enable, KB_SCAN_DISABLE_LID_ANGLE);
}
#endif
#ifdef BOARD_GRU
static void usb_charge_resume(void)
{
/* Turn on USB-A ports on as we go into S0 from S3. */
gpio_set_level(GPIO_USB_A_EN, 1);
gpio_set_level(GPIO_USB_A_CHARGE_EN, 1);
}
DECLARE_HOOK(HOOK_CHIPSET_RESUME, usb_charge_resume, HOOK_PRIO_DEFAULT);
static void usb_charge_shutdown(void)
{
/* Turn off USB-A ports as we go back to S5. */
gpio_set_level(GPIO_USB_A_CHARGE_EN, 0);
gpio_set_level(GPIO_USB_A_EN, 0);
}
DECLARE_HOOK(HOOK_CHIPSET_SHUTDOWN, usb_charge_shutdown, HOOK_PRIO_DEFAULT);
#endif
#define PWM_DISPLIGHT_SYSJUMP_TAG 0x5044 /* "PD" */
#define PWM_HOOK_VERSION 1
static void pwm_displight_restore_state(void)
{
const int *prev;
int version, size;
prev = (const int *)system_get_jump_tag(PWM_DISPLIGHT_SYSJUMP_TAG,
&version, &size);
if (prev && version == PWM_HOOK_VERSION && size == sizeof(*prev))
pwm_set_raw_duty(PWM_CH_DISPLIGHT, *prev);
}
DECLARE_HOOK(HOOK_INIT, pwm_displight_restore_state, HOOK_PRIO_INIT_PWM + 1);
static void pwm_displight_preserve_state(void)
{
int pwm_displight_duty = pwm_get_raw_duty(PWM_CH_DISPLIGHT);
system_add_jump_tag(PWM_DISPLIGHT_SYSJUMP_TAG, PWM_HOOK_VERSION,
sizeof(pwm_displight_duty), &pwm_displight_duty);
}
DECLARE_HOOK(HOOK_SYSJUMP, pwm_displight_preserve_state, HOOK_PRIO_DEFAULT);
int board_allow_i2c_passthru(int port)
{
return (port == I2C_PORT_VIRTUAL_BATTERY);
}