Files
OpenCellular/board/nautilus/board.c
Jongpil Jung 62d94fc2a9 nautilus: Implement workaround for broken reset flags for rev3.
Issue will fix next board revision. It was not fixed in rev3 yet.
So, we neet to add workaround for rev3 as well.

BUG=b:67062902
BRANCH=None
TEST=None

Change-Id: I033df22f342a2c8f0ddf4b1883d99018db1df16d
Signed-off-by: Jongpil Jung <jongpil19.jung@samsung.com>
Reviewed-on: https://chromium-review.googlesource.com/893578
Commit-Ready: Jongpil Jung <jongpil19.jung@samsung.corp-partner.google.com>
Tested-by: Jongpil Jung <jongpil19.jung@samsung.corp-partner.google.com>
Reviewed-by: Shawn N <shawnn@chromium.org>
2018-01-31 05:58:00 -08:00

780 lines
21 KiB
C

/* Copyright 2017 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* Poppy board-specific configuration */
#include "adc.h"
#include "adc_chip.h"
#include "bd99992gw.h"
#include "board_config.h"
#include "button.h"
#include "charge_manager.h"
#include "charge_state.h"
#include "charge_ramp.h"
#include "charger.h"
#include "chipset.h"
#include "console.h"
#include "driver/accelgyro_bmi160.h"
#include "driver/accel_bma2x2.h"
#include "driver/baro_bmp280.h"
#include "driver/tcpm/ps8xxx.h"
#include "driver/tcpm/tcpci.h"
#include "driver/tcpm/tcpm.h"
#include "driver/temp_sensor/bd99992gw.h"
#include "extpower.h"
#include "gpio.h"
#include "hooks.h"
#include "host_command.h"
#include "i2c.h"
#include "keyboard_scan.h"
#include "lid_switch.h"
#include "math_util.h"
#include "motion_lid.h"
#include "motion_sense.h"
#include "pi3usb9281.h"
#include "power.h"
#include "power_button.h"
#include "spi.h"
#include "switch.h"
#include "system.h"
#include "tablet_mode.h"
#include "task.h"
#include "temp_sensor.h"
#include "timer.h"
#include "uart.h"
#include "usb_charge.h"
#include "usb_mux.h"
#include "usb_pd.h"
#include "usb_pd_tcpm.h"
#include "util.h"
#include "espi.h"
#define CPRINTS(format, args...) cprints(CC_USBCHARGE, format, ## args)
#define CPRINTF(format, args...) cprintf(CC_USBCHARGE, format, ## args)
static void tcpc_alert_event(enum gpio_signal signal)
{
if ((signal == GPIO_USB_C0_PD_INT_ODL) &&
!gpio_get_level(GPIO_USB_C0_PD_RST_L))
return;
else if ((signal == GPIO_USB_C1_PD_INT_ODL) &&
!gpio_get_level(GPIO_USB_C1_PD_RST_L))
return;
#ifdef HAS_TASK_PDCMD
/* Exchange status with TCPCs */
host_command_pd_send_status(PD_CHARGE_NO_CHANGE);
#endif
}
/* Set PD discharge whenever VBUS detection is high (i.e. below threshold). */
static void vbus_discharge_handler(void)
{
if (system_get_board_version() >= 2) {
pd_set_vbus_discharge(0,
gpio_get_level(GPIO_USB_C0_VBUS_WAKE_L));
pd_set_vbus_discharge(1,
gpio_get_level(GPIO_USB_C1_VBUS_WAKE_L));
}
}
DECLARE_DEFERRED(vbus_discharge_handler);
void vbus0_evt(enum gpio_signal signal)
{
/* VBUS present GPIO is inverted */
usb_charger_vbus_change(0, !gpio_get_level(signal));
task_wake(TASK_ID_PD_C0);
hook_call_deferred(&vbus_discharge_handler_data, 0);
}
void vbus1_evt(enum gpio_signal signal)
{
/* VBUS present GPIO is inverted */
usb_charger_vbus_change(1, !gpio_get_level(signal));
task_wake(TASK_ID_PD_C1);
hook_call_deferred(&vbus_discharge_handler_data, 0);
}
void usb0_evt(enum gpio_signal signal)
{
task_set_event(TASK_ID_USB_CHG_P0, USB_CHG_EVENT_BC12, 0);
}
void usb1_evt(enum gpio_signal signal)
{
task_set_event(TASK_ID_USB_CHG_P1, USB_CHG_EVENT_BC12, 0);
}
#include "gpio_list.h"
/* power signal list. Must match order of enum power_signal. */
const struct power_signal_info power_signal_list[] = {
#ifdef CONFIG_POWER_S0IX
{GPIO_PCH_SLP_S0_L,
POWER_SIGNAL_ACTIVE_HIGH | POWER_SIGNAL_DISABLE_AT_BOOT,
"SLP_S0_DEASSERTED"},
#endif
#ifdef CONFIG_ESPI_VW_SIGNALS
{VW_SLP_S3_L, POWER_SIGNAL_ACTIVE_HIGH, "SLP_S3_DEASSERTED"},
{VW_SLP_S4_L, POWER_SIGNAL_ACTIVE_HIGH, "SLP_S4_DEASSERTED"},
#else
{GPIO_PCH_SLP_S3_L, POWER_SIGNAL_ACTIVE_HIGH, "SLP_S3_DEASSERTED"},
{GPIO_PCH_SLP_S4_L, POWER_SIGNAL_ACTIVE_HIGH, "SLP_S4_DEASSERTED"},
#endif
{GPIO_PCH_SLP_SUS_L, POWER_SIGNAL_ACTIVE_HIGH, "SLP_SUS_DEASSERTED"},
{GPIO_RSMRST_L_PGOOD, POWER_SIGNAL_ACTIVE_HIGH, "RSMRST_L_PGOOD"},
{GPIO_PMIC_DPWROK, POWER_SIGNAL_ACTIVE_HIGH, "PMIC_DPWROK"},
};
BUILD_ASSERT(ARRAY_SIZE(power_signal_list) == POWER_SIGNAL_COUNT);
/* Hibernate wake configuration */
const enum gpio_signal hibernate_wake_pins[] = {
GPIO_AC_PRESENT,
GPIO_POWER_BUTTON_L,
};
const int hibernate_wake_pins_used = ARRAY_SIZE(hibernate_wake_pins);
/* ADC channels */
const struct adc_t adc_channels[] = {
/* Base detection */
[ADC_BASE_DET] = {"BASE_DET", NPCX_ADC_CH0,
ADC_MAX_VOLT, ADC_READ_MAX+1, 0},
/* Vbus sensing (10x voltage divider). */
[ADC_VBUS] = {"VBUS", NPCX_ADC_CH2, ADC_MAX_VOLT*10, ADC_READ_MAX+1, 0},
/*
* Adapter current output or battery charging/discharging current (uV)
* 18x amplification on charger side.
*/
[ADC_AMON_BMON] = {"AMON_BMON", NPCX_ADC_CH1, ADC_MAX_VOLT*1000/18,
ADC_READ_MAX+1, 0},
};
BUILD_ASSERT(ARRAY_SIZE(adc_channels) == ADC_CH_COUNT);
/* I2C port map */
const struct i2c_port_t i2c_ports[] = {
{"tcpc0", NPCX_I2C_PORT0_0, 400, GPIO_I2C0_0_SCL, GPIO_I2C0_0_SDA},
{"tcpc1", NPCX_I2C_PORT0_1, 400, GPIO_I2C0_1_SCL, GPIO_I2C0_1_SDA},
{"charger", NPCX_I2C_PORT1, 100, GPIO_I2C1_SCL, GPIO_I2C1_SDA},
{"pmic", NPCX_I2C_PORT2, 400, GPIO_I2C2_SCL, GPIO_I2C2_SDA},
{"accelgyro", NPCX_I2C_PORT3, 400, GPIO_I2C3_SCL, GPIO_I2C3_SDA},
};
const unsigned int i2c_ports_used = ARRAY_SIZE(i2c_ports);
/* TCPC mux configuration */
const struct tcpc_config_t tcpc_config[CONFIG_USB_PD_PORT_COUNT] = {
{NPCX_I2C_PORT0_0, 0x16, &ps8xxx_tcpm_drv, TCPC_ALERT_ACTIVE_LOW},
{NPCX_I2C_PORT0_1, 0x16, &ps8xxx_tcpm_drv, TCPC_ALERT_ACTIVE_LOW},
};
struct usb_mux usb_muxes[CONFIG_USB_PD_PORT_COUNT] = {
{
.port_addr = 0,
.driver = &tcpci_tcpm_usb_mux_driver,
.hpd_update = &ps8xxx_tcpc_update_hpd_status,
},
{
.port_addr = 1,
.driver = &tcpci_tcpm_usb_mux_driver,
.hpd_update = &ps8xxx_tcpc_update_hpd_status,
}
};
struct pi3usb9281_config pi3usb9281_chips[] = {
{
.i2c_port = I2C_PORT_USB_CHARGER_0,
.mux_lock = NULL,
},
{
.i2c_port = I2C_PORT_USB_CHARGER_1,
.mux_lock = NULL,
},
};
BUILD_ASSERT(ARRAY_SIZE(pi3usb9281_chips) ==
CONFIG_BC12_DETECT_PI3USB9281_CHIP_COUNT);
const int usb_port_enable[CONFIG_USB_PORT_POWER_SMART_PORT_COUNT] = {
GPIO_USB1_ENABLE,
};
void board_reset_pd_mcu(void)
{
/* Assert reset */
gpio_set_level(GPIO_USB_C0_PD_RST_L, 0);
gpio_set_level(GPIO_USB_C1_PD_RST_L, 0);
msleep(1);
gpio_set_level(GPIO_USB_C0_PD_RST_L, 1);
gpio_set_level(GPIO_USB_C1_PD_RST_L, 1);
}
void board_tcpc_init(void)
{
int port;
/* Only reset TCPC if not sysjump */
if (!system_jumped_to_this_image()) {
board_reset_pd_mcu();
}
/* Enable TCPC interrupts */
gpio_enable_interrupt(GPIO_USB_C0_PD_INT_ODL);
gpio_enable_interrupt(GPIO_USB_C1_PD_INT_ODL);
/*
* Initialize HPD to low; after sysjump SOC needs to see
* HPD pulse to enable video path
*/
for (port = 0; port < CONFIG_USB_PD_PORT_COUNT; port++) {
const struct usb_mux *mux = &usb_muxes[port];
mux->hpd_update(port, 0, 0);
}
}
DECLARE_HOOK(HOOK_INIT, board_tcpc_init, HOOK_PRIO_INIT_I2C+1);
uint16_t tcpc_get_alert_status(void)
{
uint16_t status = 0;
if (!gpio_get_level(GPIO_USB_C0_PD_INT_ODL)) {
if (gpio_get_level(GPIO_USB_C0_PD_RST_L))
status |= PD_STATUS_TCPC_ALERT_0;
}
if (!gpio_get_level(GPIO_USB_C1_PD_INT_ODL)) {
if (gpio_get_level(GPIO_USB_C1_PD_RST_L))
status |= PD_STATUS_TCPC_ALERT_1;
}
return status;
}
const struct temp_sensor_t temp_sensors[] = {
{"Battery", TEMP_SENSOR_TYPE_BATTERY, charge_get_battery_temp, 0, 4},
/* These BD99992GW temp sensors are only readable in S0 */
{"Charger", TEMP_SENSOR_TYPE_BOARD, bd99992gw_get_val,
BD99992GW_ADC_CHANNEL_SYSTHERM1, 4},
{"DRAM", TEMP_SENSOR_TYPE_BOARD, bd99992gw_get_val,
BD99992GW_ADC_CHANNEL_SYSTHERM2, 4},
};
BUILD_ASSERT(ARRAY_SIZE(temp_sensors) == TEMP_SENSOR_COUNT);
/*
* Check if PMIC fault registers indicate VR fault. If yes, print out fault
* register info to console. Additionally, set panic reason so that the OS can
* check for fault register info by looking at offset 0x14(PWRSTAT1) and
* 0x15(PWRSTAT2) in cros ec panicinfo.
*/
static void board_report_pmic_fault(const char *str)
{
int vrfault, pwrstat1 = 0, pwrstat2 = 0;
uint32_t info;
/* RESETIRQ1 -- Bit 4: VRFAULT */
if (i2c_read8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x8, &vrfault)
!= EC_SUCCESS)
return;
if (!(vrfault & (1 << 4)))
return;
/* VRFAULT has occurred, print VRFAULT status bits. */
/* PWRSTAT1 */
i2c_read8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x16, &pwrstat1);
/* PWRSTAT2 */
i2c_read8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x17, &pwrstat2);
CPRINTS("PMIC VRFAULT: %s", str);
CPRINTS("PMIC VRFAULT: PWRSTAT1=0x%02x PWRSTAT2=0x%02x", pwrstat1,
pwrstat2);
/* Clear all faults -- Write 1 to clear. */
i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x8, (1 << 4));
i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x16, pwrstat1);
i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x17, pwrstat2);
/*
* Status of the fault registers can be checked in the OS by looking at
* offset 0x14(PWRSTAT1) and 0x15(PWRSTAT2) in cros ec panicinfo.
*/
info = ((pwrstat2 & 0xFF) << 8) | (pwrstat1 & 0xFF);
panic_set_reason(PANIC_SW_PMIC_FAULT, info, 0);
}
static void board_pmic_disable_slp_s0_vr_decay(void)
{
/*
* VCCIOCNT:
* Bit 6 (0) - Disable decay of VCCIO on SLP_S0# assertion
* Bits 5:4 (00) - Nominal output voltage: 0.975V
* Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion
* Bits 1:0 (10) - VR set to AUTO operating mode
*/
i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x30, 0xa);
/*
* V18ACNT:
* Bits 7:6 (00) - Disable low power mode on SLP_S0# assertion
* Bits 5:4 (10) - Nominal voltage set to 1.8V
* Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion
* Bits 1:0 (10) - VR set to AUTO operating mode
*/
i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x34, 0x2a);
/*
* V100ACNT:
* Bits 7:6 (00) - Disable low power mode on SLP_S0# assertion
* Bits 5:4 (01) - Nominal voltage 1.0V
* Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion
* Bits 1:0 (10) - VR set to AUTO operating mode
*/
i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x37, 0x1a);
/*
* V085ACNT:
* Bits 7:6 (00) - Disable low power mode on SLP_S0# assertion
* Bits 5:4 (11) - Nominal voltage 1.0V
* Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion
* Bits 1:0 (10) - VR set to AUTO operating mode
*/
i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x38, 0x3a);
}
static void board_pmic_enable_slp_s0_vr_decay(void)
{
/*
* VCCIOCNT:
* Bit 6 (1) - Enable decay of VCCIO on SLP_S0# assertion
* Bits 5:4 (00) - Nominal output voltage: 0.975V
* Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion
* Bits 1:0 (10) - VR set to AUTO operating mode
*/
i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x30, 0x4a);
/*
* V18ACNT:
* Bits 7:6 (01) - Enable low power mode on SLP_S0# assertion
* Bits 5:4 (10) - Nominal voltage set to 1.8V
* Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion
* Bits 1:0 (10) - VR set to AUTO operating mode
*/
i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x34, 0x6a);
/*
* V100ACNT:
* Bits 7:6 (01) - Enable low power mode on SLP_S0# assertion
* Bits 5:4 (01) - Nominal voltage 1.0V
* Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion
* Bits 1:0 (10) - VR set to AUTO operating mode
*/
i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x37, 0x5a);
/*
* V085ACNT:
* Bits 7:6 (01) - Enable low power mode on SLP_S0# assertion
* Bits 5:4 (11) - Nominal voltage 1.0V
* Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion
* Bits 1:0 (10) - VR set to AUTO operating mode
*/
i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x38, 0x7a);
}
void power_board_handle_host_sleep_event(enum host_sleep_event state)
{
if (state == HOST_SLEEP_EVENT_S0IX_SUSPEND)
board_pmic_enable_slp_s0_vr_decay();
else if (state == HOST_SLEEP_EVENT_S0IX_RESUME)
board_pmic_disable_slp_s0_vr_decay();
}
static void board_pmic_init(void)
{
board_report_pmic_fault("SYSJUMP");
if (system_jumped_to_this_image())
return;
/* DISCHGCNT3 - enable 100 ohm discharge on V1.00A */
i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x3e, 0x04);
board_pmic_disable_slp_s0_vr_decay();
/* VRMODECTRL - disable low-power mode for all rails */
i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x3b, 0x1f);
}
DECLARE_HOOK(HOOK_INIT, board_pmic_init, HOOK_PRIO_DEFAULT);
/* Initialize board. */
static void board_init(void)
{
/*
* This enables pull-down on F_DIO1 (SPI MISO), and F_DIO0 (SPI MOSI),
* whenever the EC is not doing SPI flash transactions. This avoids
* floating SPI buffer input (MISO), which causes power leakage (see
* b/64797021).
*/
NPCX_PUPD_EN1 |= (1 << NPCX_DEVPU1_F_SPI_PUD_EN);
/* Provide AC status to the PCH */
gpio_set_level(GPIO_PCH_ACOK, extpower_is_present());
/* Enable sensors power supply */
gpio_set_level(GPIO_PP1800_DX_SENSOR, 1);
/* Enable VBUS interrupt */
gpio_enable_interrupt(GPIO_USB_C0_VBUS_WAKE_L);
gpio_enable_interrupt(GPIO_USB_C1_VBUS_WAKE_L);
/* Enable pericom BC1.2 interrupts */
gpio_enable_interrupt(GPIO_USB_C0_BC12_INT_L);
gpio_enable_interrupt(GPIO_USB_C1_BC12_INT_L);
/* Level of sensor's I2C and interrupt are 3.3V on proto board */
if(system_get_board_version() < 2) {
/* ACCELGYRO3_INT_L */
gpio_set_flags(GPIO_ACCELGYRO3_INT_L, GPIO_INT_FALLING);
/* I2C3_SCL / I2C3_SDA */
gpio_set_flags(GPIO_I2C3_SCL, GPIO_INPUT);
gpio_set_flags(GPIO_I2C3_SDA, GPIO_INPUT);
}
/* Enable Gyro interrupts */
gpio_enable_interrupt(GPIO_ACCELGYRO3_INT_L);
}
DECLARE_HOOK(HOOK_INIT, board_init, HOOK_PRIO_DEFAULT);
/**
* Buffer the AC present GPIO to the PCH.
*/
static void board_extpower(void)
{
gpio_set_level(GPIO_PCH_ACOK, extpower_is_present());
}
DECLARE_HOOK(HOOK_AC_CHANGE, board_extpower, HOOK_PRIO_DEFAULT);
/**
* Set active charge port -- only one port can be active at a time.
*
* @param charge_port Charge port to enable.
*
* Returns EC_SUCCESS if charge port is accepted and made active,
* EC_ERROR_* otherwise.
*/
int board_set_active_charge_port(int charge_port)
{
/* charge port is a physical port */
int is_real_port = (charge_port >= 0 &&
charge_port < CONFIG_USB_PD_PORT_COUNT);
/* check if we are source VBUS on the port */
int source = gpio_get_level(charge_port == 0 ? GPIO_USB_C0_5V_EN :
GPIO_USB_C1_5V_EN);
if (is_real_port && source) {
CPRINTF("Skip enable p%d", charge_port);
return EC_ERROR_INVAL;
}
CPRINTF("New chg p%d", charge_port);
if (charge_port == CHARGE_PORT_NONE) {
/* Disable both ports */
gpio_set_level(GPIO_USB_C0_CHARGE_L, 1);
gpio_set_level(GPIO_USB_C1_CHARGE_L, 1);
} else {
/* Make sure non-charging port is disabled */
gpio_set_level(charge_port ? GPIO_USB_C0_CHARGE_L :
GPIO_USB_C1_CHARGE_L, 1);
/* Enable charging port */
gpio_set_level(charge_port ? GPIO_USB_C1_CHARGE_L :
GPIO_USB_C0_CHARGE_L, 0);
}
return EC_SUCCESS;
}
/**
* Set the charge limit based upon desired maximum.
*
* @param port Port number.
* @param supplier Charge supplier type.
* @param charge_ma Desired charge limit (mA).
* @param charge_mv Negotiated charge voltage (mV).
*/
void board_set_charge_limit(int port, int supplier, int charge_ma,
int max_ma, int charge_mv)
{
/*
* Limit the input current to 96% negotiated limit,
* to account for the charger chip margin.
*/
charge_ma = charge_ma * 96 / 100;
charge_set_input_current_limit(MAX(charge_ma,
CONFIG_CHARGER_INPUT_CURRENT), charge_mv);
}
/**
* Return whether ramping is allowed for given supplier
*/
int board_is_ramp_allowed(int supplier)
{
/* Don't allow ramping in RO when write protected */
if (!system_is_in_rw() && system_is_locked())
return 0;
else
return (supplier == CHARGE_SUPPLIER_BC12_DCP ||
supplier == CHARGE_SUPPLIER_BC12_SDP ||
supplier == CHARGE_SUPPLIER_BC12_CDP ||
supplier == CHARGE_SUPPLIER_OTHER);
}
/**
* Return the maximum allowed input current
*/
int board_get_ramp_current_limit(int supplier, int sup_curr)
{
switch (supplier) {
case CHARGE_SUPPLIER_BC12_DCP:
return 2000;
case CHARGE_SUPPLIER_BC12_SDP:
return 1000;
case CHARGE_SUPPLIER_BC12_CDP:
case CHARGE_SUPPLIER_PROPRIETARY:
return sup_curr;
default:
return 500;
}
}
void board_hibernate(void)
{
CPRINTS("Triggering PMIC shutdown.");
uart_flush_output();
/* Trigger PMIC shutdown. */
if (i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x49, 0x01)) {
/*
* If we can't tell the PMIC to shutdown, instead reset
* and don't start the AP. Hopefully we'll be able to
* communicate with the PMIC next time.
*/
CPRINTS("PMIC i2c failed.");
system_reset(SYSTEM_RESET_LEAVE_AP_OFF);
}
/* Await shutdown. */
while (1)
;
}
/* Lid Sensor mutex */
static struct mutex g_lid_mutex;
static struct mutex g_base_mutex;
static struct bmi160_drv_data_t g_bmi160_data;
/* BMA255 private data */
static struct bma2x2_accel_data g_bma255_data;
/* Matrix to rotate accelrator into standard reference frame */
const matrix_3x3_t base_standard_ref = {
{ FLOAT_TO_FP(-1), 0, 0 },
{ 0, FLOAT_TO_FP(1), 0 },
{ 0, 0, FLOAT_TO_FP(-1) }
};
const matrix_3x3_t lid_standard_ref = {
{ FLOAT_TO_FP(-1), 0, 0 },
{ 0, FLOAT_TO_FP(1), 0 },
{ 0, 0, FLOAT_TO_FP(-1) }
};
struct motion_sensor_t motion_sensors[] = {
[LID_ACCEL] = {
.name = "Lid Accel",
.active_mask = SENSOR_ACTIVE_S0_S3,
.chip = MOTIONSENSE_CHIP_BMA255,
.type = MOTIONSENSE_TYPE_ACCEL,
.location = MOTIONSENSE_LOC_LID,
.drv = &bma2x2_accel_drv,
.mutex = &g_lid_mutex,
.drv_data = &g_bma255_data,
.port = I2C_PORT_ACCEL,
.addr = BMA2x2_I2C_ADDR1,
.rot_standard_ref = &lid_standard_ref,
.min_frequency = BMA255_ACCEL_MIN_FREQ,
.max_frequency = BMA255_ACCEL_MAX_FREQ,
.default_range = 2, /* g, to support tablet mode */
.config = {
/* AP: by default use EC settings */
[SENSOR_CONFIG_AP] = {
.odr = 0,
.ec_rate = 0,
},
/* EC use accel for angle detection */
[SENSOR_CONFIG_EC_S0] = {
.odr = 10000 | ROUND_UP_FLAG,
.ec_rate = 0,
},
/* Sensor on in S3 */
[SENSOR_CONFIG_EC_S3] = {
.odr = 10000 | ROUND_UP_FLAG,
.ec_rate = 0,
},
/* Sensor off in S5 */
[SENSOR_CONFIG_EC_S5] = {
.odr = 0,
.ec_rate = 0,
},
},
},
[BASE_ACCEL] = {
.name = "Base Accel",
.active_mask = SENSOR_ACTIVE_S0_S3,
.chip = MOTIONSENSE_CHIP_BMI160,
.type = MOTIONSENSE_TYPE_ACCEL,
.location = MOTIONSENSE_LOC_BASE,
.drv = &bmi160_drv,
.mutex = &g_base_mutex,
.drv_data = &g_bmi160_data,
.port = I2C_PORT_ACCEL,
.addr = BMI160_ADDR0,
.rot_standard_ref = &base_standard_ref,
.min_frequency = BMI160_ACCEL_MIN_FREQ,
.max_frequency = BMI160_ACCEL_MAX_FREQ,
.default_range = 2, /* g, to support tablet mode */
.config = {
/* AP: by default use EC settings */
[SENSOR_CONFIG_AP] = {
.odr = 0,
.ec_rate = 0,
},
/* EC use accel for angle detection */
[SENSOR_CONFIG_EC_S0] = {
.odr = 10000 | ROUND_UP_FLAG,
.ec_rate = 100 * MSEC,
},
/* Sensor on in S3 */
[SENSOR_CONFIG_EC_S3] = {
.odr = 10000 | ROUND_UP_FLAG,
.ec_rate = 0,
},
/* Sensor off in S5 */
[SENSOR_CONFIG_EC_S5] = {
.odr = 0,
.ec_rate = 0
},
},
},
[BASE_GYRO] = {
.name = "Base Gyro",
.active_mask = SENSOR_ACTIVE_S0_S3,
.chip = MOTIONSENSE_CHIP_BMI160,
.type = MOTIONSENSE_TYPE_GYRO,
.location = MOTIONSENSE_LOC_BASE,
.drv = &bmi160_drv,
.mutex = &g_base_mutex,
.drv_data = &g_bmi160_data,
.port = I2C_PORT_ACCEL,
.addr = BMI160_ADDR0,
.default_range = 1000, /* dps */
.rot_standard_ref = &base_standard_ref,
.min_frequency = BMI160_GYRO_MIN_FREQ,
.max_frequency = BMI160_GYRO_MAX_FREQ,
.config = {
/* AP: by default shutdown all sensors */
[SENSOR_CONFIG_AP] = {
.odr = 0,
.ec_rate = 0,
},
/* EC does not need in S0 */
[SENSOR_CONFIG_EC_S0] = {
.odr = 0,
.ec_rate = 0,
},
/* Sensor off in S3/S5 */
[SENSOR_CONFIG_EC_S3] = {
.odr = 0,
.ec_rate = 0,
},
/* Sensor off in S3/S5 */
[SENSOR_CONFIG_EC_S5] = {
.odr = 0,
.ec_rate = 0,
},
},
},
};
const unsigned int motion_sensor_count = ARRAY_SIZE(motion_sensors);
/* Enable or disable input devices, based on chipset state and tablet mode */
#ifndef TEST_BUILD
void lid_angle_peripheral_enable(int enable)
{
/* If the lid is in 360 position, ignore the lid angle,
* which might be faulty. Disable keyboard and touchpad. */
if (tablet_get_mode() || chipset_in_state(CHIPSET_STATE_ANY_OFF))
enable = 0;
keyboard_scan_enable(enable, KB_SCAN_DISABLE_LID_ANGLE);
}
#endif
static void board_chipset_reset(void)
{
board_report_pmic_fault("CHIPSET RESET");
}
DECLARE_HOOK(HOOK_CHIPSET_RESET, board_chipset_reset, HOOK_PRIO_DEFAULT);
/* Called on AP S3 -> S0 transition */
static void board_chipset_resume(void)
{
gpio_set_level(GPIO_ENABLE_BACKLIGHT, 1);
}
DECLARE_HOOK(HOOK_CHIPSET_RESUME, board_chipset_resume, HOOK_PRIO_DEFAULT);
/* Called on AP S0 -> S3 transition */
static void board_chipset_suspend(void)
{
gpio_set_level(GPIO_ENABLE_BACKLIGHT, 0);
}
DECLARE_HOOK(HOOK_CHIPSET_SUSPEND, board_chipset_suspend, HOOK_PRIO_DEFAULT);
static void board_chipset_startup(void)
{
/* Power On USB-A port */
gpio_set_level(GPIO_USB_POWERON_L, 0);
/* Enable USB-A port. */
gpio_set_level(GPIO_USB1_ENABLE, 1);
gpio_set_level(GPIO_ENABLE_TOUCHPAD, 1);
}
DECLARE_HOOK(HOOK_CHIPSET_STARTUP, board_chipset_startup, HOOK_PRIO_DEFAULT);
static void board_chipset_shutdown(void)
{
/* Power Off USB-A port */
gpio_set_level(GPIO_USB_POWERON_L, 1);
/* Disable USB-A port. */
gpio_set_level(GPIO_USB1_ENABLE, 0);
gpio_set_level(GPIO_ENABLE_TOUCHPAD, 0);
}
DECLARE_HOOK(HOOK_CHIPSET_SHUTDOWN, board_chipset_shutdown, HOOK_PRIO_DEFAULT);
int board_has_working_reset_flags(void)
{
int version = system_get_board_version();
/* Boards Rev1, Rev2 and Rev3 will lose reset flags on power cycle. */
if ((version == 1) || (version == 2) || (version == 3))
return 0;
/* All other board versions should have working reset flags */
return 1;
}