Files
OpenCellular/chip/g/gpio.c
Vadim Bendebury 5789d69257 g: simulate open drain GPIO behavior
Some upcoming designs based on the g chip require GPIOs connected to
open drain circuits.

Even though the chip explicitly provides only two open drain GPIOs,
the desired behavior of the rest of the pins when configured as 'open
drain' could be simulated by software if when 'high' is required the
output is disabled instead of driving the pin value.

To make sure there is no fallout from RO driving the pins, also add an
explicit 'disable output' initialization in case a GPIO is configured
for open drain and the initial output value is 'high'.

BRANCH=cr50
BUG=none
TEST=verified that Cr50 booted successfully, also confirmed that on
     the test board that GPIOs defined as Open Drain allow we set
     output to 1 only if pulled up.

Change-Id: Id2daa19b992bab7fb01148b6fa7b57fd0728b33d
Signed-off-by: Vadim Bendebury <vbendeb@chromium.org>
Reviewed-on: https://chromium-review.googlesource.com/848152
Reviewed-by: Randall Spangler <rspangler@chromium.org>
2018-01-03 16:54:35 -08:00

544 lines
14 KiB
C

/* Copyright (c) 2014 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "common.h"
#include "console.h"
#include "gpio.h"
#include "hooks.h"
#include "registers.h"
#include "task.h"
/*
* The Cr50's ARM core has two GPIO ports of 16 bits each. Each GPIO signal
* can be routed through a full NxM crossbar to any of a number of external
* pins. When setting up GPIOs, both the ARM core and the crossbar must be
* configured correctly. This file is only concerned with the ARM core.
*/
test_mockable int gpio_get_level(enum gpio_signal signal)
{
const struct gpio_info *g = gpio_list + signal;
return !!(GR_GPIO_DATAIN(g->port) & g->mask);
}
static void set_one_gpio_bit(uint32_t port, uint16_t mask, int value)
{
if (!mask)
return;
/* Assumes mask has one and only one bit set */
if (mask & 0x00FF)
GR_GPIO_MASKLOWBYTE(port, mask) = value ? mask : 0;
else
GR_GPIO_MASKHIGHBYTE(port, mask >> 8) = value ? mask : 0;
}
void gpio_set_level(enum gpio_signal signal, int value)
{
const struct gpio_info *g = gpio_list + signal;
if (g->flags & GPIO_OPEN_DRAIN) {
if (value) {
GR_GPIO_CLRDOUTEN(g->port) = g->mask;
/* Don't ever set ODR output to HIGH. */
return;
}
GR_GPIO_SETDOUTEN(g->port) = g->mask;
}
set_one_gpio_bit(g->port, g->mask, value);
}
int gpio_get_flags_by_mask(uint32_t port, uint32_t mask)
{
uint32_t flags = 0;
uint32_t val = 0;
/* Only one bit must be set. */
if ((mask != (mask & -mask)) || (mask == 0))
return 0;
/* Check mode. */
/* ARM DDI 0479B: 3.5.2 */
val = GR_GPIO_SETDOUTEN(port) & mask;
if (val) {
flags |= GPIO_OUTPUT;
val = GR_GPIO_DOUT(port) & mask;
if (val)
flags |= GPIO_HIGH;
else
flags |= GPIO_LOW;
} else
flags |= GPIO_INPUT;
return flags;
}
void gpio_set_flags_by_mask(uint32_t port, uint32_t mask, uint32_t flags)
{
/* Output must be enabled when needed, input is always enabled */
if (flags & GPIO_OUTPUT) {
if (flags & GPIO_LOW)
set_one_gpio_bit(port, mask, 0);
else if ((flags & GPIO_HIGH) && !(flags & GPIO_OPEN_DRAIN))
/* Set to HIGH only if not open drain. */
set_one_gpio_bit(port, mask, 1);
if (!(flags & GPIO_OPEN_DRAIN) || (flags & GPIO_LOW))
/*
* Enable output for push-pull (high or low), or
* open-drain low.
*/
GR_GPIO_SETDOUTEN(port) = mask;
else if (flags & GPIO_OPEN_DRAIN)
/*
* Disable output for other open-drain cases to get a
* high-Z pin.
*/
GR_GPIO_CLRDOUTEN(port) = mask;
} else {
GR_GPIO_CLRDOUTEN(port) = mask;
}
/* Interrupt types */
if (flags & GPIO_INT_F_LOW) {
GR_GPIO_CLRINTTYPE(port) = mask;
GR_GPIO_CLRINTPOL(port) = mask;
}
if (flags & GPIO_INT_F_HIGH) {
GR_GPIO_CLRINTTYPE(port) = mask;
GR_GPIO_SETINTPOL(port) = mask;
}
if (flags & GPIO_INT_F_FALLING) {
GR_GPIO_SETINTTYPE(port) = mask;
GR_GPIO_CLRINTPOL(port) = mask;
}
if (flags & GPIO_INT_F_RISING) {
GR_GPIO_SETINTTYPE(port) = mask;
GR_GPIO_SETINTPOL(port) = mask;
}
/* No way to trigger on both rising and falling edges, darn it. */
}
void gpio_set_alternate_function(uint32_t port, uint32_t mask, int func)
{
/* This HW feature is not present in the Cr50 ARM core */
}
/*
* A pinmux_config contains the selector offset and selector value for a
* particular pinmux entry.
*/
struct pinmux_config {
uint16_t offset;
uint16_t value;
};
#define PINMUX_CONFIG(name) { \
.offset = CONCAT3(GC_PINMUX_, name, _SEL_OFFSET), \
.value = CONCAT3(GC_PINMUX_, name, _SEL), \
}
/*
* The pinmux struct contains a full description of the connection of a DIO to
* a GPIO, an internal peripheral, or as a direct input. The flag
* DIO_TO_PERIPHERAL is used to select between the two union entries. There
* is no union entry for direct input because it requires no parameters.
*/
struct pinmux {
union {
enum gpio_signal signal;
struct pinmux_config peripheral;
};
struct pinmux_config dio;
uint16_t flags;
};
/*
* These macros are used to add flags indicating the type of mapping requested.
* DIO_TO_PERIPHERAL for FUNC mappings.
* DIO_ENABLE_DIRECT_INPUT for DIRECT mappings.
*/
#define FLAGS_FUNC(name) DIO_TO_PERIPHERAL
#define FLAGS_GPIO(name) 0
#define FLAGS_DIRECT DIO_ENABLE_DIRECT_INPUT
/*
* These macros are used to selectively initialize the anonymous union based
* on the type of pinmux mapping requested (FUNC, GPIO, or DIRECT).
*/
#define PINMUX_FUNC(name) .peripheral = PINMUX_CONFIG(name),
#define PINMUX_GPIO(name) .signal = CONCAT2(GPIO_, name),
#define PINMUX_DIRECT
/*
* Initialize an entry for the pinmux list. The first parameter can be either
* FUNC(name) or GPIO(name) depending on the type of mapping required. The
* second argument is the DIO name to map to. And the final argument is the
* flags set for this mapping, this macro adds the DIO_TO_PERIPHERAL flag for
* a FUNC mapping.
*/
#define PINMUX(name, dio_name, dio_flags) { \
PINMUX_##name \
.dio = PINMUX_CONFIG(DIO##dio_name), \
.flags = dio_flags | FLAGS_##name \
},
static const struct pinmux pinmux_list[] = {
#include "gpio.wrap"
};
/* Return true if DIO should be a digital input */
static int connect_dio_to_peripheral(struct pinmux const *p)
{
if (p->flags & DIO_OUTPUT)
DIO_SEL_REG(p->dio.offset) = p->peripheral.value;
if (p->flags & DIO_INPUT)
DIO_SEL_REG(p->peripheral.offset) = p->dio.value;
return p->flags & DIO_INPUT;
}
/* Return true if DIO should be a digital input */
static int connect_dio_to_gpio(struct pinmux const *p)
{
const struct gpio_info *g = gpio_list + p->signal;
int bitnum = GPIO_MASK_TO_NUM(g->mask);
if ((g->flags & GPIO_OUTPUT) || (p->flags & DIO_OUTPUT))
DIO_SEL_REG(p->dio.offset) = GET_GPIO_FUNC(g->port, bitnum);
if ((g->flags & GPIO_INPUT) || (p->flags & DIO_INPUT))
GET_GPIO_SEL_REG(g->port, bitnum) = p->dio.value;
if (g->flags & GPIO_PULL_UP)
REG_WRITE_MLV(DIO_CTL_REG(p->dio.offset),
DIO_CTL_PU_MASK,
DIO_CTL_PU_LSB, 1);
if (g->flags & GPIO_PULL_DOWN)
REG_WRITE_MLV(DIO_CTL_REG(p->dio.offset),
DIO_CTL_PD_MASK,
DIO_CTL_PD_LSB, 1);
return (g->flags & GPIO_INPUT) || (p->flags & DIO_INPUT);
}
static void connect_pinmux(struct pinmux const *p)
{
uint32_t bitmask;
int is_input;
if (p->flags & DIO_ENABLE_DIRECT_INPUT) {
/* We don't have to setup any muxes for directly connected
* pads. The only ones that we are likely to ever care about
* are tied to the SPS and SPI peripherals, and they're all
* inouts, so we can just enable the digital input for them
* regardless. */
is_input = 1;
} else {
/* Pads that must be muxed to specific GPIOs or peripherals may
* or may not be inputs. We'll check those individually. */
if (p->flags & DIO_TO_PERIPHERAL)
is_input = connect_dio_to_peripheral(p);
else
is_input = connect_dio_to_gpio(p);
}
/* Configure the DIO pad controls */
if (is_input)
REG_WRITE_MLV(DIO_CTL_REG(p->dio.offset),
DIO_CTL_IE_MASK,
DIO_CTL_IE_LSB, 1);
if (p->flags & DIO_PULL_UP)
REG_WRITE_MLV(DIO_CTL_REG(p->dio.offset),
DIO_CTL_PU_MASK,
DIO_CTL_PU_LSB, 1);
if (p->flags & DIO_PULL_DOWN)
REG_WRITE_MLV(DIO_CTL_REG(p->dio.offset),
DIO_CTL_PD_MASK,
DIO_CTL_PD_LSB, 1);
/* Enable any wake pins needed to exit low-power modes */
if ((p->flags & DIO_WAKE_EN0) &&
(p->dio.offset <= GC_PINMUX_DIOB7_SEL_OFFSET)) { /* not VIOn ! */
bitmask = (1 << (p->dio.offset / 8));
/* enable pad as wake source */
GREG32(PINMUX, EXITEN0) |= bitmask;
/* level (0) or edge sensitive (1) */
if (p->flags & DIO_WAKE_EDGE0)
GREG32(PINMUX, EXITEDGE0) |= bitmask;
else
GREG32(PINMUX, EXITEDGE0) &= ~bitmask;
/* high/rising (0) or low/falling (1) */
if (p->flags & DIO_WAKE_INV0)
GREG32(PINMUX, EXITINV0) |= bitmask;
else
GREG32(PINMUX, EXITINV0) &= ~bitmask;
}
}
int gpio_enable_interrupt(enum gpio_signal signal)
{
const struct gpio_info *g = gpio_list + signal;
GR_GPIO_SETINTEN(g->port) = g->mask;
return EC_SUCCESS;
}
int gpio_disable_interrupt(enum gpio_signal signal)
{
const struct gpio_info *g = gpio_list + signal;
GR_GPIO_CLRINTEN(g->port) = g->mask;
return EC_SUCCESS;
}
int gpio_clear_pending_interrupt(enum gpio_signal signal)
{
const struct gpio_info *g = gpio_list + signal;
GR_GPIO_CLRINTSTAT(g->port) = g->mask;
return EC_SUCCESS;
}
void gpio_pre_init(void)
{
const struct gpio_info *g = gpio_list;
int i;
/* Enable clocks */
REG_WRITE_MLV(GR_PMU_PERICLKSET0,
GC_PMU_PERICLKSET0_DGPIO0_CLK_MASK,
GC_PMU_PERICLKSET0_DGPIO0_CLK_LSB, 1);
REG_WRITE_MLV(GR_PMU_PERICLKSET0,
GC_PMU_PERICLKSET0_DGPIO1_CLK_MASK,
GC_PMU_PERICLKSET0_DGPIO1_CLK_LSB, 1);
/* Set up the pinmux */
for (i = 0; i < ARRAY_SIZE(pinmux_list); i++)
connect_pinmux(pinmux_list + i);
/* Set up ARM core GPIOs */
for (i = 0; i < GPIO_COUNT; i++, g++)
if (g->mask && !(g->flags & GPIO_DEFAULT))
gpio_set_flags_by_mask(g->port, g->mask, g->flags);
}
static void gpio_init(void)
{
task_enable_irq(GC_IRQNUM_GPIO0_GPIOCOMBINT);
task_enable_irq(GC_IRQNUM_GPIO1_GPIOCOMBINT);
}
DECLARE_HOOK(HOOK_INIT, gpio_init, HOOK_PRIO_DEFAULT);
/*****************************************************************************/
/* Interrupt handler stuff */
static void gpio_invoke_handler(uint32_t port, uint32_t mask)
{
const struct gpio_info *g = gpio_list;
int i;
for (i = 0; i < GPIO_IH_COUNT; i++, g++)
if (port == g->port && (mask & g->mask))
gpio_irq_handlers[i](i);
}
static void gpio_interrupt(int port)
{
int bitnum;
uint32_t mask;
uint32_t pending = GR_GPIO_CLRINTSTAT(port);
while (pending) {
bitnum = GPIO_MASK_TO_NUM(pending);
mask = 1 << bitnum;
pending &= ~mask;
gpio_invoke_handler(port, mask);
GR_GPIO_CLRINTSTAT(port) = mask;
}
}
void _gpio0_interrupt(void)
{
gpio_interrupt(0);
}
void _gpio1_interrupt(void)
{
gpio_interrupt(1);
}
DECLARE_IRQ(GC_IRQNUM_GPIO0_GPIOCOMBINT, _gpio0_interrupt, 1);
DECLARE_IRQ(GC_IRQNUM_GPIO1_GPIOCOMBINT, _gpio1_interrupt, 1);
/*
* The uart, i2c, and spi suffix arrays must match the order of the pinmux
* select registers in chip/g/hw_regdefs.h. If the order is incorrect, the
* pinmux command output will be wrong.
*/
static const char * const uart_str[] = {
"0_CTS", "0_RTS", "0_RX", "0_TX",
"1_CTS", "1_RTS", "1_RX", "1_TX",
"2_CTS", "2_RTS", "2_RX", "2_TX",
};
static const char * const i2c_str[] = {
"0_SCL", "0_SDA",
"1_SCL", "1_SDA",
"S0_SCL", "S0_SDA",
};
static const char * const spi_str[] = {
"SPICLK", "SPICSB", "SPIMISO", "SPIMOSI",
};
static void print_periph(int sel)
{
if (sel >= 1 && sel <= 16)
ccprintf("GPIO0_GPIO%d", sel - 1);
else if (sel >= 17 && sel <= 32)
ccprintf("GPIO1_GPIO%d", sel - 17);
else if (sel >= 33 && sel <= 38)
ccprintf("I2C%s", i2c_str[sel - 33]);
else if (sel >= 49 && sel <= 52)
ccprintf("SPI1_%s", spi_str[sel - 49]);
else if (sel >= 67 && sel <= 78)
ccprintf("UART%s", uart_str[sel - 67]);
else if (sel)
ccprintf("UNDEF");
}
static void show_pinmux(const char *name, int i, int ofs)
{
uint32_t sel = DIO_SEL_REG(i * 8 + ofs);
uint32_t ctl = DIO_CTL_REG(i * 8 + ofs);
uint32_t bitmask = 1 << (i + ofs / 8);
uint32_t edge = GREG32(PINMUX, EXITEDGE0) & bitmask;
/* skip empty ones (ignoring drive strength bits) */
if (!sel && !(ctl & (0xf << 2)) && !(GREG32(PINMUX, EXITEN0) & bitmask))
return;
ccprintf("%08x: %s%-2d %2d %s%s%s%s ",
GC_PINMUX_BASE_ADDR + i * 8 + ofs,
name, i, sel,
(ctl & (1<<2)) ? " IN" : "",
(ctl & (1<<3)) ? " PD" : "",
(ctl & (1<<4)) ? " PU" : "",
(ctl & (1<<5)) ? " INV" : "");
print_periph(sel);
if (GREG32(PINMUX, EXITEN0) & bitmask) {
ccprintf(" WAKE_");
if (GREG32(PINMUX, EXITINV0) & bitmask)
ccprintf("%s", edge ? "FALLING" : "LOW");
else
ccprintf("%s", edge ? "RISING" : "HIGH");
}
ccprintf("\n");
cflush();
}
static void print_dio_str(uint32_t sel)
{
if (sel >= 1 && sel <= 2)
ccprintf(" VIO%d\n", 2 - sel);
else if (sel >= 3 && sel <= 10)
ccprintf(" DIOB%d\n", 10 - sel);
else if (sel >= 11 && sel <= 25)
ccprintf(" DIOA%d\n", 25 - sel);
else if (sel >= 26 && sel <= 30)
ccprintf(" DIOM%d\n", 30 - sel);
else
ccprintf("\n");
cflush();
}
static void show_pinmux_periph(int i)
{
uint32_t ofs = GC_PINMUX_GPIO0_GPIO0_SEL_OFFSET + i * 4;
uint32_t sel = DIO_SEL_REG(ofs);
if (sel == 0)
return;
ccprintf("%08x: ", GC_PINMUX_BASE_ADDR + ofs);
print_periph(i + 1);
ccprintf("\t%2d", sel);
print_dio_str(sel);
}
static int command_pinmux(int argc, char **argv)
{
int i;
/* Pad sources */
for (i = 0; i <= 4; i++)
show_pinmux("DIOM", i, 0x00);
for (i = 0; i <= 14; i++)
show_pinmux("DIOA", i, 0x28);
for (i = 0; i <= 7; i++)
show_pinmux("DIOB", i, 0xa0);
ccprintf("\n");
/* GPIO & Peripheral sources */
for (i = 0; i <= 98; i++)
show_pinmux_periph(i);
ccprintf("\n");
return EC_SUCCESS;
}
DECLARE_SAFE_CONSOLE_COMMAND(pinmux, command_pinmux,
"",
"Display pinmux info");
static const char * const int_str[] = {
"LOW", "FALLING", "HIGH", "RISING",
};
static void show_gpiocfg(int n)
{
uint32_t din = GR_GPIO_DATAIN(n);
uint32_t dout = GR_GPIO_DOUT(n);
uint32_t outen = GR_GPIO_SETDOUTEN(n);
uint32_t inten = GR_GPIO_SETINTEN(n);
uint32_t intpol = GR_GPIO_SETINTPOL(n);
uint32_t inttype = GR_GPIO_SETINTTYPE(n);
uint32_t mask;
int i, j;
for (i = 0, mask = 0x1; i < 16; i++, mask <<= 1) {
/* Skip it unless it's an output or an interrupt */
if (!((outen & mask) || (inten & mask)))
continue;
ccprintf("GPIO%d_GPIO%d:\tread %d", n, i, !!(din & mask));
if (outen & mask)
ccprintf(" drive %d", !!(dout & mask));
if (inten & mask) {
j = ((intpol & mask) ? 2 : 0) +
((inttype & mask) ? 1 : 0);
ccprintf(" INT_%s", int_str[j]);
}
ccprintf("\n");
}
}
static int command_gpiocfg(int argc, char **argv)
{
show_gpiocfg(0);
show_gpiocfg(1);
return EC_SUCCESS;
}
DECLARE_SAFE_CONSOLE_COMMAND(gpiocfg, command_gpiocfg,
"",
"Display GPIO configs");