Files
OpenCellular/chip/g/loader/verify.c
nagendra modadugu ae89bb6f49 cr50: SHA1 and SHA256 implementation with hardware support
This change includes hardware and software support for SHA1/256 on
CR50. When running in the RO image, only hardware sha256 support is
included. When running in the RW image, the code auto-selects between
the software and hardware implementation. Software implementation path
is taken if the hardware is currently in use by some other context.

Refactor the CR50 loader to use this abstraction.

The existing software implementation for SHA1 and SHA256 is used for
the software path.

CQ-DEPEND=CL:*239385
BRANCH=none
TEST=EC shell boots fine (implies that SHA256 works)
BUG=chrome-os-partner:43025

Change-Id: I7bcefc12fcef869dac2e48793bd0cb5ce8e80d5b
Signed-off-by: nagendra modadugu <ngm@google.com>
Signed-off-by: Vadim Bendebury <vbendeb@chromium.org>
Reviewed-on: https://chromium-review.googlesource.com/313011
2015-11-25 11:17:13 -08:00

203 lines
6.2 KiB
C

/* Copyright 2015 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "dcrypto.h"
#include "debug_printf.h"
#include "registers.h"
#include "setup.h"
#include "trng.h"
#define LOADERKEYEXP 3
#define RSA_NUM_WORDS 96
#define RSA_NUM_BYTES (RSA_NUM_WORDS * 4)
static const uint32_t LOADERKEY_A[RSA_NUM_WORDS + 1] = {
0xea54076f, 0xe986c871, 0x8cffffb4, 0xd7c50bda, 0x30700ee0, 0xc023a878,
0x30e7fdf8, 0x5bb0c06f, 0x1d25d80f, 0x18e181f7, 0xfbf7a8b0, 0x331c16d4,
0xeb042379, 0x4cef13ec, 0x5b2072e7, 0xc807b01d, 0x443fb117, 0xd2e04e5b,
0xcb984393, 0x85d90d9d, 0x0332dcb8, 0xd42ccacf, 0x787e3947, 0x1975095c,
0x2d523b0b, 0xf815be95, 0x00db9a2c, 0x6c08442b, 0x57a022bb, 0x9d5c84ed,
0x46a6d275, 0x4392dcf8, 0xfa6812e3, 0xe0f3a3e6, 0xc8ff3f61, 0xd518dbac,
0xbba7376a, 0x767a219a, 0x9d153119, 0x980b16f8, 0x79eb5078, 0xb869924d,
0x2e392cc2, 0x76c04f32, 0xe35ea788, 0xcb67fa62, 0x30efec79, 0x36f04ae0,
0x2212a5fc, 0x51c41de8, 0x2b0b84db, 0x6803ca1c, 0x39a248fd, 0xa0c31ee2,
0xb1ca22b6, 0x16e54056, 0x086f6591, 0x3825208d, 0x079c157b, 0xe51c15a6,
0x0dd1c66f, 0x8267b8ae, 0xf06b4f85, 0xc68b27ab, 0x31bcd5fc, 0x34d563b7,
0xc4d2212e, 0x1e770199, 0xaf797061, 0x824d4853, 0x526e18cd, 0x4bb8a0dc,
0xeb9377fe, 0x04fda73c, 0x2933f8a6, 0xe16c0432, 0x40ea1bd5, 0x9efcd77e,
0x92be9e55, 0x003c1128, 0x48442cf9, 0x80b4fb31, 0xfe1e3df3, 0x1d28e14d,
0xe99c0f9d, 0x521d38c2, 0x0082c4f1, 0xcff25d56, 0x0d3e7186, 0xe72b98f0,
0xefaa5689, 0x74051ed5, 0x6b7e7fff, 0x822b1944, 0x77a94732, 0x8d0b9aaf,
0x7a8ee958
};
const uint32_t LOADERKEY_B[RSA_NUM_WORDS + 1] = {
0xeea8b39f, 0xdfa457a1, 0x8b81fdc3, 0xb0204c84, 0x297b9db2, 0xaa70318d,
0x8cd41a68, 0x4aa0f9bb, 0xf63f9d69, 0xf0fe64b0, 0x96e42e2d, 0x5e494b1d,
0x066cefd0, 0xde949c16, 0xc92499ed, 0x92229990, 0x48ac3b1a, 0x1dfc2388,
0xda71d258, 0x826ddedf, 0xd0220e70, 0x6140dedf, 0x92bcdec7, 0xcdf91c22,
0xaa110aed, 0xc371c2f9, 0xa3fedf2a, 0xfd2c6a07, 0xe71aabce, 0x7f426484,
0x0ac51128, 0x4bab4ca2, 0x0162d0b9, 0x49fef7e3, 0xeda8664e, 0x14b92b7a,
0x0397dbb7, 0x5b9eb94a, 0x069b5059, 0x3851f46b, 0x45bbcaba, 0x0b812652,
0x7cd8b10b, 0xcaeccc32, 0x0ffd08e3, 0xfe6f0306, 0x8c02d5f7, 0xafdc4595,
0xe0edda47, 0x0cc821db, 0x50beeae5, 0xb9868c18, 0xefd2de11, 0xdfecd15c,
0xa8937a70, 0x223d9d95, 0x1b70848b, 0x54fa9176, 0x8bf012ef, 0xd37c1446,
0xf9a7ebeb, 0xbf2dfa9a, 0xdc6b8ea0, 0xe5f8bc4d, 0x539222b5, 0x192521e4,
0xe7088628, 0x2646bb56, 0x6fcc5d70, 0x3f1cd8e9, 0xae9cec24, 0xf53b6559,
0x6f091891, 0x5342fa61, 0xbfee50e9, 0x211ad58a, 0xd1c5aa17, 0x252dfa56,
0x17131164, 0x4630a459, 0x2f681f51, 0x3fb9ab3c, 0x6c8e0a70, 0xa34a868b,
0xe960e702, 0xa470d241, 0x00647369, 0xa4c25391, 0xd1926cf9, 0x5fce5488,
0xd171cb2e, 0x8a7c982e, 0xc89cbe39, 0xc0e019d8, 0x82cd1ebe, 0x68918fce,
0x5ec138fd
};
#define RANDOM_STEP 5
inline uint32_t bswap(uint32_t a)
{
uint32_t result;
__asm__ volatile("rev %0, %1;" : "=r"(result) : "r"(a));
return result;
}
/* Montgomery c[] += a * b[] / R % key. */
static void montMulAdd(const uint32_t *key,
uint32_t *c, const uint32_t a,
const uint32_t *b)
{
register uint64_t tmp;
uint32_t i, A, B, d0;
{
tmp = c[0] + (uint64_t)a * b[0];
A = tmp >> 32;
d0 = (uint32_t)tmp * *key++;
tmp = (uint32_t)tmp + (uint64_t)d0 * *key++;
B = tmp >> 32;
}
for (i = 0; i < RSA_NUM_WORDS - 1; ++i) {
tmp = A + (uint64_t)a * b[i + 1] + c[i + 1];
A = tmp >> 32;
tmp = B + (uint64_t)d0 * *key++ + (uint32_t)tmp;
c[i] = (uint32_t)tmp;
B = tmp >> 32;
}
c[RSA_NUM_WORDS - 1] = A + B;
}
/* Montgomery c[] = a[] * b[] / R % key. */
static void montMul(const uint32_t *key,
uint32_t *c, const uint32_t *a,
const uint32_t *b)
{
int i;
for (i = 0; i < RSA_NUM_WORDS; ++i)
c[i] = 0;
for (i = 0; i < RSA_NUM_WORDS; ++i)
montMulAdd(key, c, a[i], b);
}
/* Montgomery c[] = a[] * 1 / R % key. */
static void montMul1(const uint32_t *key,
uint32_t *c, const uint32_t *a)
{
int i;
for (i = 0; i < RSA_NUM_WORDS; ++i)
c[i] = 0;
montMulAdd(key, c, 1, a);
for (i = 1; i < RSA_NUM_WORDS; ++i)
montMulAdd(key, c, 0, a);
}
#if LOADERKEYEXP == 3
/* In-place exponentiation to power 3 % key. */
static void modpow(const uint32_t *key,
const uint32_t *signature, uint32_t *out)
{
static uint32_t aaR[RSA_NUM_WORDS];
static uint32_t aaaR[RSA_NUM_WORDS];
montMul(key, aaR, signature, signature);
montMul(key, aaaR, aaR, signature);
montMul1(key, out, aaaR);
}
#endif
void LOADERKEY_verify(uint32_t keyid, const uint32_t *signature,
const uint32_t *sha256)
{
static uint32_t buf[RSA_NUM_WORDS]
__attribute__((section(".guarded_data")));
static uint32_t hash[SHA256_DIGEST_WORDS]
__attribute__((section(".guarded_data")));
uint32_t step, offset;
const uint32_t *key;
int i;
if (keyid == LOADERKEY_B[0])
key = LOADERKEY_B;
else
key = LOADERKEY_A;
modpow(key, signature, buf);
VERBOSE("sig %.384h\n", buf);
/*
* XOR in offsets across buf. Mostly to get rid of all those -1 words
* in there.
*/
offset = rand() % RSA_NUM_WORDS;
step = (RANDOM_STEP % RSA_NUM_WORDS) || 1;
for (i = 0; i < RSA_NUM_WORDS; ++i) {
buf[offset] ^= (0x1000u + offset);
offset = (offset + step) % RSA_NUM_WORDS;
}
/*
* Xor digest location, so all words becomes 0 only iff equal.
*
* Also XOR in offset and non-zero const. This to avoid repeat
* glitches to zero be able to produce the right result.
*/
offset = rand() % SHA256_DIGEST_WORDS;
step = (RANDOM_STEP % SHA256_DIGEST_WORDS) || 1;
for (i = 0; i < SHA256_DIGEST_WORDS; ++i) {
buf[offset] ^= bswap(sha256[SHA256_DIGEST_WORDS - 1 - offset])
^ (offset + 0x10u);
offset = (offset + step) % SHA256_DIGEST_WORDS;
}
VERBOSE("\nsig^ %.384h\n\n", buf);
/* Hash resulting buffer. */
DCRYPTO_SHA256_hash((uint8_t *) buf, RSA_NUM_BYTES, (uint8_t *) hash);
VERBOSE("hash %.32h\n", hash);
/*
* Write computed hash to unlock register to unlock execution, iff
* right. Idea is that this flow cannot be glitched to have correct
* values with any probability.
*/
for (i = 0; i < SHA256_DIGEST_WORDS; ++i)
GREG32_ADDR(GLOBALSEC, SB_BL_SIG0)[i] = hash[i];
/*
* Make an unlock attempt. Value written is irrelevant, as long as
* something is written.
*/
GREG32(GLOBALSEC, SIG_UNLOCK) = 1;
}