mirror of
https://github.com/Telecominfraproject/OpenCellular.git
synced 2025-12-29 10:00:51 +00:00
This commit increases the precision used in the noisy magnitude deviation check by multiplying the scaled sensor data by 8 in the intermediate calculations. Prior to this, due to some bits being lost, certain devices would determine the lid angle as unreliable in specific angles, even though the device was at rest. BUG=b:63148973 BRANCH=eve,gru,reef TEST=Flash bob, set DUT on desk, run `while true; do ectool motionsense lid_angle; sleep 0.1; done`, slowly move the lid from 15 degrees until ~350. Verify that no particular angle results in a unreliable lid angle reading. TEST=Run `evtest` and examing cros-ec-buttons, fold screen all the way back to make tablet mode, shake device for at least 30s. Verify that there are no spurious transitions of the tablet mode switch. TEST=Repeat above tests on kevin. Change-Id: Iff06c1df2dd33c60e26a59183f62f29b71548729 Signed-off-by: Aseda Aboagye <aaboagye@google.com> Reviewed-on: https://chromium-review.googlesource.com/567050 Commit-Ready: Aseda Aboagye <aaboagye@chromium.org> Tested-by: Aseda Aboagye <aaboagye@chromium.org> Reviewed-by: Gwendal Grignou <gwendal@chromium.org> Reviewed-by: Shawn N <shawnn@chromium.org>
473 lines
14 KiB
C
473 lines
14 KiB
C
/* Copyright (c) 2014 The Chromium OS Authors. All rights reserved.
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
/* Motion sense module to read from various motion sensors. */
|
|
|
|
#include "accelgyro.h"
|
|
#include "chipset.h"
|
|
#include "common.h"
|
|
#include "console.h"
|
|
#include "gesture.h"
|
|
#include "hooks.h"
|
|
#include "host_command.h"
|
|
#include "lid_angle.h"
|
|
#include "lid_switch.h"
|
|
#include "math_util.h"
|
|
#include "motion_lid.h"
|
|
#include "motion_sense.h"
|
|
#include "power.h"
|
|
#include "tablet_mode.h"
|
|
#include "timer.h"
|
|
#include "task.h"
|
|
#include "util.h"
|
|
|
|
/* Console output macros */
|
|
#define CPUTS(outstr) cputs(CC_MOTION_LID, outstr)
|
|
#define CPRINTS(format, args...) cprints(CC_MOTION_LID, format, ## args)
|
|
#define CPRINTF(format, args...) cprintf(CC_MOTION_LID, format, ## args)
|
|
|
|
#ifdef CONFIG_LID_ANGLE_TABLET_MODE
|
|
|
|
#ifndef CONFIG_LID_ANGLE_INVALID_CHECK
|
|
#error "Check for invalid transition needed"
|
|
#endif
|
|
/*
|
|
* We are in tablet mode when the lid angle has been calculated
|
|
* to be large.
|
|
*
|
|
* By default, at boot, we are in tablet mode.
|
|
* Once a lid angle is calculated, we will get out of this fake state and enter
|
|
* tablet mode only if a high angle has been calculated.
|
|
*
|
|
* There might be false positives:
|
|
* - when the EC enters RO or RW mode.
|
|
* - when lid is closed while the hinge is perpendicalar to the floor, we will
|
|
* stay in tablet mode.
|
|
*
|
|
* Tablet mode is defined as the base being behind the lid. We use 2 threshold
|
|
* to calculate tablet mode:
|
|
* tablet_mode:
|
|
* 1 | +-----<----+----------
|
|
* | \/ /\
|
|
* | | |
|
|
* 0 |------------------------>----+
|
|
* +------------------+----------+----------+ lid angle
|
|
* 0 240 300 360
|
|
*/
|
|
#define TABLET_ZONE_LID_ANGLE FLOAT_TO_FP(300)
|
|
#define LAPTOP_ZONE_LID_ANGLE FLOAT_TO_FP(240)
|
|
|
|
/*
|
|
* We will change our tablet mode status when we are "convinced" that it has
|
|
* changed. This means we will have to consecutively calculate our new tablet
|
|
* mode while the angle is stable and come to the same conclusion. The number
|
|
* of consecutive calculations is the debounce count with an interval between
|
|
* readings set by the motion_sense task. This should avoid spurious forces
|
|
* that may trigger false transitions of the tablet mode switch.
|
|
*/
|
|
#define TABLET_MODE_DEBOUNCE_COUNT 3
|
|
static int tablet_mode_debounce_cnt = TABLET_MODE_DEBOUNCE_COUNT;
|
|
#endif
|
|
|
|
#ifdef CONFIG_LID_ANGLE_INVALID_CHECK
|
|
/* Previous lid_angle. */
|
|
static fp_t last_lid_angle_fp = FLOAT_TO_FP(-1);
|
|
|
|
/*
|
|
* This defines the range from 0 to SMALL_LID_ANGLE_RANGE of possible lid angle
|
|
* measurements when the lid is physically closed. This will be used in
|
|
* reliability calculations.
|
|
*/
|
|
#define SMALL_LID_ANGLE_RANGE 15
|
|
#endif
|
|
|
|
/* Current acceleration vectors and current lid angle. */
|
|
static int lid_angle_deg;
|
|
|
|
static int lid_angle_is_reliable;
|
|
|
|
/*
|
|
* Angle threshold for how close the hinge aligns with gravity before
|
|
* considering the lid angle calculation unreliable. For computational
|
|
* efficiency, value is given unit-less, so if you want the threshold to be
|
|
* at 15 degrees, the value would be cos(15 deg) = 0.96593.
|
|
*
|
|
* Here we're using cos(27.5 deg) = 0.88701.
|
|
*/
|
|
#define HINGE_ALIGNED_WITH_GRAVITY_THRESHOLD FLOAT_TO_FP(0.88701)
|
|
|
|
/*
|
|
* Constant to debounce lid angle changes around 360 - 0:
|
|
* If we have a rotation through the angle 0, ignore.
|
|
*/
|
|
#define DEBOUNCE_ANGLE_DELTA FLOAT_TO_FP(45)
|
|
|
|
/*
|
|
* Since the accelerometers are on the same physical device, they should be
|
|
* under the same acceleration. This constant, which mirrors
|
|
* kNoisyMagnitudeDeviation used in Chromium, is an integer which defines the
|
|
* maximum deviation in magnitude between the base and lid vectors. The units
|
|
* are in m/s^2.
|
|
*/
|
|
#define NOISY_MAGNITUDE_DEVIATION 1
|
|
|
|
/*
|
|
* Define the accelerometer orientation matrices based on the standard
|
|
* reference frame in use (note: accel data is converted to standard ref
|
|
* frame before calculating lid angle).
|
|
*/
|
|
#ifdef CONFIG_ACCEL_STD_REF_FRAME_OLD
|
|
const struct accel_orientation acc_orient = {
|
|
/* Hinge aligns with y axis. */
|
|
.rot_hinge_90 = {
|
|
{ 0, 0, FLOAT_TO_FP(1)},
|
|
{ 0, FLOAT_TO_FP(1), 0},
|
|
{ FLOAT_TO_FP(-1), 0, 0}
|
|
},
|
|
.rot_hinge_180 = {
|
|
{ FLOAT_TO_FP(-1), 0, 0},
|
|
{ 0, FLOAT_TO_FP(1), 0},
|
|
{ 0, 0, FLOAT_TO_FP(-1)}
|
|
},
|
|
.hinge_axis = {0, 1, 0},
|
|
};
|
|
#else
|
|
const struct accel_orientation acc_orient = {
|
|
/* Hinge aligns with x axis. */
|
|
.rot_hinge_90 = {
|
|
{ FLOAT_TO_FP(1), 0, 0},
|
|
{ 0, 0, FLOAT_TO_FP(1)},
|
|
{ 0, FLOAT_TO_FP(-1), 0}
|
|
},
|
|
.rot_hinge_180 = {
|
|
{ FLOAT_TO_FP(1), 0, 0},
|
|
{ 0, FLOAT_TO_FP(-1), 0},
|
|
{ 0, 0, FLOAT_TO_FP(-1)}
|
|
},
|
|
.hinge_axis = {1, 0, 0},
|
|
};
|
|
#endif
|
|
|
|
/* Pointer to constant acceleration orientation data. */
|
|
const struct accel_orientation * const p_acc_orient = &acc_orient;
|
|
|
|
const struct motion_sensor_t * const accel_base =
|
|
&motion_sensors[CONFIG_LID_ANGLE_SENSOR_BASE];
|
|
const struct motion_sensor_t * const accel_lid =
|
|
&motion_sensors[CONFIG_LID_ANGLE_SENSOR_LID];
|
|
|
|
/**
|
|
* Calculate the lid angle using two acceleration vectors, one recorded in
|
|
* the base and one in the lid.
|
|
*
|
|
* @param base Base accel vector
|
|
* @param lid Lid accel vector
|
|
* @param lid_angle Pointer to location to store lid angle result
|
|
*
|
|
* @return flag representing if resulting lid angle calculation is reliable.
|
|
*/
|
|
static int calculate_lid_angle(const vector_3_t base, const vector_3_t lid,
|
|
int *lid_angle)
|
|
{
|
|
vector_3_t v;
|
|
fp_t lid_to_base_fp, cos_lid_90, cos_lid_270;
|
|
fp_t lid_to_base, base_to_hinge;
|
|
fp_t denominator;
|
|
int reliable = 1;
|
|
#ifdef CONFIG_LID_ANGLE_TABLET_MODE
|
|
int new_tablet_mode = tablet_get_mode();
|
|
int current_tablet_mode;
|
|
#endif
|
|
int base_magnitude2, lid_magnitude2;
|
|
int base_range, lid_range, i;
|
|
vector_3_t scaled_base, scaled_lid;
|
|
|
|
/*
|
|
* The angle between lid and base is:
|
|
* acos((cad(base, lid) - cad(base, hinge)^2) /(1 - cad(base, hinge)^2))
|
|
* where cad() is the cosine_of_angle_diff() function.
|
|
*
|
|
* Make sure to check for divide by 0.
|
|
*/
|
|
lid_to_base = cosine_of_angle_diff(base, lid);
|
|
base_to_hinge = cosine_of_angle_diff(base, p_acc_orient->hinge_axis);
|
|
|
|
/*
|
|
* If hinge aligns too closely with gravity, then result may be
|
|
* unreliable.
|
|
*/
|
|
if (fp_abs(base_to_hinge) > HINGE_ALIGNED_WITH_GRAVITY_THRESHOLD)
|
|
reliable = 0;
|
|
|
|
base_to_hinge = fp_sq(base_to_hinge);
|
|
|
|
/* Check divide by 0. */
|
|
denominator = FLOAT_TO_FP(1.0) - base_to_hinge;
|
|
if (fp_abs(denominator) < FLOAT_TO_FP(0.01)) {
|
|
*lid_angle = 0;
|
|
return 0;
|
|
}
|
|
|
|
lid_to_base_fp = arc_cos(fp_div(lid_to_base - base_to_hinge,
|
|
denominator));
|
|
|
|
/*
|
|
* The previous calculation actually has two solutions, a positive and
|
|
* a negative solution. To figure out the sign of the answer, calculate
|
|
* the cosine of the angle between the actual lid angle and the
|
|
* estimated vector if the lid were open to 90 deg, cos_lid_90. Also
|
|
* calculate the cosine of the angle between the actual lid angle and
|
|
* the estimated vector if the lid were open to 270 deg,
|
|
* cos_lid_270. The smaller of the two angles represents which one is
|
|
* closer. If the lid is closer to the estimated 270 degree vector then
|
|
* the result is negative, otherwise it is positive.
|
|
*/
|
|
rotate(base, p_acc_orient->rot_hinge_90, v);
|
|
cos_lid_90 = cosine_of_angle_diff(v, lid);
|
|
rotate(v, p_acc_orient->rot_hinge_180, v);
|
|
cos_lid_270 = cosine_of_angle_diff(v, lid);
|
|
|
|
/*
|
|
* Note that cos_lid_90 and cos_lid_270 are not in degrees, because
|
|
* the arc_cos() was never performed. But, since arc_cos() is
|
|
* monotonically decreasing, we can do this comparison without ever
|
|
* taking arc_cos(). But, since the function is monotonically
|
|
* decreasing, the logic of this comparison is reversed.
|
|
*/
|
|
if (cos_lid_270 > cos_lid_90)
|
|
lid_to_base_fp = -lid_to_base_fp;
|
|
|
|
/* Place lid angle between 0 and 360 degrees. */
|
|
if (lid_to_base_fp < 0)
|
|
lid_to_base_fp += FLOAT_TO_FP(360);
|
|
|
|
/*
|
|
* Perform some additional reliability checks.
|
|
*
|
|
* If the magnitude of the two vectors differ too greatly, then the
|
|
* readings are unreliable and we can't use them to calculate the lid
|
|
* angle.
|
|
*/
|
|
|
|
/* Scale the vectors by their range. */
|
|
base_range = accel_base->drv->get_range(accel_base);
|
|
lid_range = accel_lid->drv->get_range(accel_lid);
|
|
|
|
for (i = X; i <= Z; i++) {
|
|
/*
|
|
* To increase precision, we'll use 8x the sensor data in the
|
|
* intermediate calculation. We would normally divide by 2^15.
|
|
*
|
|
* This is safe because even at a range of 8g, calculating the
|
|
* magnitude squared should still be less than the max of a
|
|
* 32-bit signed integer.
|
|
*
|
|
* The max that base[i] could be is 32768, resulting in a max
|
|
* value for scaled_base[i] of 640 @ 8g range and force.
|
|
* Typically our range is set to 2g.
|
|
*/
|
|
scaled_base[i] = base[i] * base_range * 10 >> 12;
|
|
scaled_lid[i] = lid[i] * lid_range * 10 >> 12;
|
|
}
|
|
|
|
base_magnitude2 = (scaled_base[X] * scaled_base[X] +
|
|
scaled_base[Y] * scaled_base[Y] +
|
|
scaled_base[Z] * scaled_base[Z]) >> 6;
|
|
lid_magnitude2 = (scaled_lid[X] * scaled_lid[X] +
|
|
scaled_lid[Y] * scaled_lid[Y] +
|
|
scaled_lid[Z] * scaled_lid[Z]) >> 6;
|
|
|
|
/*
|
|
* Check to see if they differ than more than NOISY_MAGNITUDE_DEVIATION.
|
|
* If the vectors do, then the measured angle is unreliable.
|
|
*
|
|
* Note, that we don't actually have to take the square root to get the
|
|
* magnitude, but we can work with the magnitudes squared directly as
|
|
* shown below:
|
|
*
|
|
* If A and B are the base and lid magnitudes, and x is the noisy
|
|
* magnitude deviation:
|
|
*
|
|
* A - B < x
|
|
* A^2 - B^2 < x * (A + B)
|
|
* A^2 - B^2 < 2 * x * avg(A, B)
|
|
*
|
|
* If we assume that the average acceleration should be about 1g, then
|
|
* we have:
|
|
*
|
|
* (A^2 - B^2) < 2 * 1g * NOISY_MAGNITUDE_DEVIATION
|
|
*/
|
|
if (ABS(base_magnitude2 - lid_magnitude2) >
|
|
(2 * 10 * NOISY_MAGNITUDE_DEVIATION))
|
|
reliable = 0;
|
|
|
|
#ifdef CONFIG_LID_ANGLE_INVALID_CHECK
|
|
/* Ignore large angles when the lid is closed. */
|
|
if (!lid_is_open() &&
|
|
(lid_to_base_fp > FLOAT_TO_FP(SMALL_LID_ANGLE_RANGE)))
|
|
reliable = 0;
|
|
|
|
/*
|
|
* Ignore small angles when the lid is open.
|
|
*
|
|
* Note that we're not correcting the angle, but just marking it as
|
|
* unreliable. Attempting to correct the angle would cause bad angles
|
|
* when closing the lid. However, there is one edge case. If the
|
|
* device is suspended in laptop mode, but then is physically placed in
|
|
* tablet mode, but ALL the angles are read as unreliable, a keypress
|
|
* may wake us up. This is because we require at least 4 consecutive
|
|
* reliable readings over a threshold to disable key scanning.
|
|
*/
|
|
if (lid_is_open() &&
|
|
(lid_to_base_fp <= FLOAT_TO_FP(SMALL_LID_ANGLE_RANGE)))
|
|
reliable = 0;
|
|
|
|
if (reliable) {
|
|
/*
|
|
* Seed the lid angle now that we have a reliable
|
|
* measurement.
|
|
*/
|
|
if (last_lid_angle_fp == FLOAT_TO_FP(-1))
|
|
last_lid_angle_fp = lid_to_base_fp;
|
|
|
|
/*
|
|
* If the angle was last seen as really large and now it's quite
|
|
* small, we may be rotating around from 360->0 so correct it to
|
|
* be large. But in case that the lid switch is closed, we can
|
|
* prove the small angle we see is correct so we take the angle
|
|
* as is.
|
|
*/
|
|
if ((last_lid_angle_fp >=
|
|
FLOAT_TO_FP(360) - DEBOUNCE_ANGLE_DELTA) &&
|
|
(lid_to_base_fp <= DEBOUNCE_ANGLE_DELTA) &&
|
|
(lid_is_open()))
|
|
last_lid_angle_fp = FLOAT_TO_FP(360) - lid_to_base_fp;
|
|
else
|
|
last_lid_angle_fp = lid_to_base_fp;
|
|
}
|
|
|
|
/*
|
|
* Round to nearest int by adding 0.5. Note, only works because lid
|
|
* angle is known to be positive.
|
|
*/
|
|
*lid_angle = FP_TO_INT(last_lid_angle_fp + FLOAT_TO_FP(0.5));
|
|
|
|
#ifdef CONFIG_LID_ANGLE_TABLET_MODE
|
|
current_tablet_mode = tablet_get_mode();
|
|
if (reliable) {
|
|
if (last_lid_angle_fp > TABLET_ZONE_LID_ANGLE)
|
|
new_tablet_mode = 1;
|
|
else if (last_lid_angle_fp < LAPTOP_ZONE_LID_ANGLE)
|
|
new_tablet_mode = 0;
|
|
|
|
/* Only change tablet mode if we're sure. */
|
|
if (current_tablet_mode != new_tablet_mode) {
|
|
if (tablet_mode_debounce_cnt == 0) {
|
|
/* Alright, we're convinced. */
|
|
tablet_mode_debounce_cnt =
|
|
TABLET_MODE_DEBOUNCE_COUNT;
|
|
tablet_set_mode(new_tablet_mode);
|
|
return reliable;
|
|
}
|
|
tablet_mode_debounce_cnt--;
|
|
return reliable;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we got a reliable measurement that agrees with our current tablet
|
|
* mode, then reset the debounce counter. Also, make it harder to leave
|
|
* tablet mode by resetting the debounce count when we encounter an
|
|
* unreliable angle when we're already in tablet mode.
|
|
*/
|
|
if (((reliable == 0) && current_tablet_mode == 1) ||
|
|
((reliable == 1) && (current_tablet_mode == new_tablet_mode)))
|
|
tablet_mode_debounce_cnt = TABLET_MODE_DEBOUNCE_COUNT;
|
|
#endif /* CONFIG_LID_ANGLE_TABLET_MODE */
|
|
#else /* CONFIG_LID_ANGLE_INVALID_CHECK */
|
|
*lid_angle = FP_TO_INT(lid_to_base_fp + FLOAT_TO_FP(0.5));
|
|
#endif
|
|
return reliable;
|
|
}
|
|
|
|
int motion_lid_get_angle(void)
|
|
{
|
|
if (lid_angle_is_reliable)
|
|
return lid_angle_deg;
|
|
else
|
|
return LID_ANGLE_UNRELIABLE;
|
|
}
|
|
|
|
/*
|
|
* Calculate lid angle and massage the results
|
|
*/
|
|
void motion_lid_calc(void)
|
|
{
|
|
#ifndef CONFIG_ACCEL_STD_REF_FRAME_OLD
|
|
/*
|
|
* rotate lid vector by 180 deg to be in the right coordinate frame
|
|
* because calculate_lid_angle assumes when the lid is closed, that
|
|
* the lid and base accelerometer data matches
|
|
*/
|
|
vector_3_t lid = { accel_lid->xyz[X],
|
|
accel_lid->xyz[Y] * -1,
|
|
accel_lid->xyz[Z] * -1};
|
|
/* Calculate angle of lid accel. */
|
|
lid_angle_is_reliable = calculate_lid_angle(
|
|
accel_base->xyz, lid,
|
|
&lid_angle_deg);
|
|
#else
|
|
/* Calculate angle of lid accel. */
|
|
lid_angle_is_reliable = calculate_lid_angle(
|
|
accel_base->xyz, accel_lid->xyz,
|
|
&lid_angle_deg);
|
|
#endif
|
|
|
|
#ifdef CONFIG_LID_ANGLE_UPDATE
|
|
lid_angle_update(motion_lid_get_angle());
|
|
#endif
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* Host commands */
|
|
|
|
|
|
int host_cmd_motion_lid(struct host_cmd_handler_args *args)
|
|
{
|
|
const struct ec_params_motion_sense *in = args->params;
|
|
struct ec_response_motion_sense *out = args->response;
|
|
|
|
switch (in->cmd) {
|
|
case MOTIONSENSE_CMD_KB_WAKE_ANGLE:
|
|
#ifdef CONFIG_LID_ANGLE_UPDATE
|
|
/* Set new keyboard wake lid angle if data arg has value. */
|
|
if (in->kb_wake_angle.data != EC_MOTION_SENSE_NO_VALUE)
|
|
lid_angle_set_wake_angle(in->kb_wake_angle.data);
|
|
|
|
out->kb_wake_angle.ret = lid_angle_get_wake_angle();
|
|
#else
|
|
out->kb_wake_angle.ret = 0;
|
|
#endif
|
|
args->response_size = sizeof(out->kb_wake_angle);
|
|
|
|
break;
|
|
|
|
case MOTIONSENSE_CMD_LID_ANGLE:
|
|
#ifdef CONFIG_LID_ANGLE
|
|
out->lid_angle.value = motion_lid_get_angle();
|
|
args->response_size = sizeof(out->lid_angle);
|
|
#else
|
|
return EC_RES_INVALID_PARAM;
|
|
#endif
|
|
break;
|
|
|
|
default:
|
|
return EC_RES_INVALID_PARAM;
|
|
}
|
|
|
|
return EC_RES_SUCCESS;
|
|
}
|
|
|