Files
OpenCellular/common/uart_buffering.c
Vic Yang 1a10681369 Handle left and right arrow key in UART console.
Handle left and right arrow key to move cursor around.
Other escape sequences are still ignored.

BUG=chrome-os-partner:7865
TEST=type some text and use left and right arrow key. Cursor should
move.
type 'hellp', left key, and backspace. Should show 'help' and hitting
enter prints help.
type 'hexp', left key, backspace, 'l'. Should show 'help and hitting
enter prints help.

Change-Id: If9ac4504c56f023f824175de2daf565ce72d4560
2012-02-01 10:35:36 +08:00

523 lines
12 KiB
C

/* Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* Common code to do UART buffering and printing */
#include <stdarg.h>
#include "console.h"
#include "task.h"
#include "uart.h"
#include "util.h"
/* Buffer sizes; should be power of 2 */
#define TX_BUF_SIZE 512
#define RX_BUF_SIZE 128 /* suggest larger than 80 to copy&paste script. */
/* Macros to advance in the circular transmit and receive buffers */
#define TX_BUF_NEXT(i) (((i) + 1) & (TX_BUF_SIZE - 1))
#define RX_BUF_NEXT(i) (((i) + 1) & (RX_BUF_SIZE - 1))
#define RX_BUF_PREV(i) (((i) - 1) & (RX_BUF_SIZE - 1))
/* Macro to calculate difference of pointers in the circular receive buffers */
#define RX_BUF_DIFF(i, j) (((i) - (j)) & (RX_BUF_SIZE - 1))
/* Transmit and receive buffers */
static volatile char tx_buf[TX_BUF_SIZE];
static volatile int tx_buf_head;
static volatile int tx_buf_tail;
static volatile char rx_buf[RX_BUF_SIZE];
static volatile int rx_buf_head;
static volatile int rx_buf_tail;
static volatile int rx_buf_ptr;
static int last_rx_was_cr;
static int in_escape;
static char esc_seq_char;
static int console_mode = 1;
/* TODO: should have an API to set raw mode for the UART. In raw
* mode, we don't do CRLF translation or echo input. */
/* Put a single character into the transmit buffer. Does not enable
* the transmit interrupt; assumes that happens elsewhere. Returns
* zero if the character was transmitted, 1 if it was dropped. */
static int __tx_char(int c)
{
int tx_buf_next;
/* Do newline to CRLF translation */
if (console_mode && c == '\n' && __tx_char('\r'))
return 1;
tx_buf_next = TX_BUF_NEXT(tx_buf_head);
if (tx_buf_next == tx_buf_tail)
return 1;
tx_buf[tx_buf_head] = c;
tx_buf_head = tx_buf_next;
return 0;
}
static void move_rx_ptr_fwd(void)
{
if (rx_buf_ptr != rx_buf_head) {
rx_buf_ptr = RX_BUF_NEXT(rx_buf_ptr);
uart_write_char(0x1B);
uart_write_char('[');
uart_write_char('1');
uart_write_char('C');
}
}
static void move_rx_ptr_bwd(void)
{
if (rx_buf_ptr != rx_buf_tail) {
rx_buf_ptr = RX_BUF_PREV(rx_buf_ptr);
uart_write_char(0x1B);
uart_write_char('[');
uart_write_char('1');
uart_write_char('D');
}
}
static void move_cursor_back(int dist)
{
while (dist--)
uart_write_char('\b');
}
static void handle_backspace(void)
{
if (rx_buf_ptr != rx_buf_tail) {
/* Move texts after cursor and also update rx buffer. */
int ptr = rx_buf_ptr;
while (ptr != rx_buf_head) {
uart_write_char(rx_buf[ptr]);
rx_buf[RX_BUF_PREV(ptr)] = rx_buf[ptr];
ptr = RX_BUF_NEXT(ptr);
}
/* Space over last character and move cursor back to correct
* position.
*/
uart_write_char(' ');
move_cursor_back(RX_BUF_DIFF(ptr, rx_buf_ptr) + 1);
rx_buf_head = RX_BUF_PREV(rx_buf_head);
rx_buf_ptr = RX_BUF_PREV(rx_buf_ptr);
}
else
/* Cursor moves pass the first character. Move it back. */
uart_write_char(' ');
}
static void insert_char(char c)
{
int ptr;
/* Move buffer ptr to the end if 'c' is new line */
if (c == '\n')
rx_buf_ptr = rx_buf_head;
/* Move text after cursor. */
ptr = rx_buf_ptr;
while (ptr != rx_buf_head) {
uart_write_char(rx_buf[ptr]);
ptr = RX_BUF_NEXT(ptr);
}
/* Insert character to rx buffer and move cursor to correct
* position.
*/
while (ptr != rx_buf_ptr) {
rx_buf[ptr] = rx_buf[RX_BUF_PREV(ptr)];
uart_write_char('\b');
ptr = RX_BUF_PREV(ptr);
}
rx_buf[rx_buf_ptr] = c;
rx_buf_head = RX_BUF_NEXT(rx_buf_head);
rx_buf_ptr = RX_BUF_NEXT(rx_buf_ptr);
/* On overflow, discard oldest output */
if (rx_buf_head == rx_buf_tail)
rx_buf_tail = RX_BUF_NEXT(rx_buf_tail);
}
/* Helper for UART processing */
void uart_process(void)
{
/* Copy input from buffer until RX fifo empty */
while (uart_rx_available()) {
int c = uart_read_char();
/* Handle console mode echoing and translation */
if (console_mode) {
/* Translate CR and CRLF to LF (newline) */
if (c == '\r') {
last_rx_was_cr = 1;
c = '\n';
} else if (c == '\n' && last_rx_was_cr) {
last_rx_was_cr = 0;
continue;
} else {
last_rx_was_cr = 0;
}
/* Handle left and right key, and eat other terminal
* escape sequences (ESC [ ...).
* Would be really cool if we used arrow keys to edit
* command history, but for now it's sufficient just to
* keep them from causing problems. */
if (c == 0x1B) {
in_escape = 1;
esc_seq_char = c;
continue;
} else if (in_escape) {
if (esc_seq_char == 0x1B && c == '[')
esc_seq_char = '[';
else if (esc_seq_char == '[') {
if (c == 'D') /* Left key */
move_rx_ptr_bwd();
else if (c == 'C') /* Right key */
move_rx_ptr_fwd();
esc_seq_char = 0;
}
else
esc_seq_char = 0;
if (isalpha(c) || c == '~') {
esc_seq_char = 0;
in_escape = 0;
}
continue;
}
/* Echo characters directly to the transmit FIFO so we
* don't interfere with the transmit buffer. This
* means that if a lot of output is happening, input
* characters won't always be properly echoed. */
if (c == '\n')
uart_write_char('\r');
uart_write_char(c);
/* Handle backspace if we can */
if (c == '\b') {
handle_backspace();
continue;
}
}
insert_char(c);
/* Call console callback on newline, if in console mode */
if (console_mode && c == '\n')
console_has_input();
}
/* Copy output from buffer until TX fifo full or output buffer empty */
while (uart_tx_ready() && (tx_buf_head != tx_buf_tail)) {
uart_write_char(tx_buf[tx_buf_tail]);
tx_buf_tail = TX_BUF_NEXT(tx_buf_tail);
}
/* If output buffer is empty, disable transmit interrupt */
if (tx_buf_tail == tx_buf_head)
uart_tx_stop();
}
void uart_set_console_mode(int enable)
{
console_mode = enable;
}
int uart_puts(const char *outstr)
{
int was_empty = (tx_buf_head == tx_buf_tail);
/* Put all characters in the output buffer */
while (*outstr) {
if (__tx_char(*outstr++) != 0)
break;
}
if (was_empty)
uart_tx_start();
/* Successful if we consumed all output */
return *outstr ? EC_ERROR_OVERFLOW : EC_SUCCESS;
}
int uart_printf(const char *format, ...)
{
static const char int_chars[] = "0123456789abcdef";
static const char error_str[] = "ERROR";
char intbuf[21]; /* Longest uint64 */
int dropped_chars = 0;
int is_left;
int pad_zero;
int pad_width;
int was_empty = (tx_buf_head == tx_buf_tail);
va_list args;
char *vstr;
int vlen;
va_start(args, format);
while (*format && !dropped_chars) {
int c = *format++;
/* Copy normal characters */
if (c != '%') {
dropped_chars |= __tx_char(c);
continue;
}
/* Get first format character */
c = *format++;
/* Send "%" for "%%" input */
if (c == '%' || c == '\0') {
dropped_chars |= __tx_char('%');
continue;
}
/* Handle %c */
if (c == 'c') {
c = va_arg(args, int);
dropped_chars |= __tx_char(c);
continue;
}
/* Handle left-justification ("%-5s") */
is_left = (c == '-');
if (is_left)
c = *format++;
/* Handle padding with 0's */
pad_zero = (c == '0');
if (pad_zero)
c = *format++;
/* Count padding length */
pad_width = 0;
while (c >= '0' && c <= '9') {
pad_width = (10 * pad_width) + c - '0';
c = *format++;
}
if (pad_width > 80) {
/* Sanity check for width failed */
format = error_str;
continue;
}
if (c == 's') {
vstr = va_arg(args, char *);
if (vstr == NULL)
vstr = "(NULL)";
} else {
uint32_t v;
int is_negative = 0;
int base = 10;
/* TODO: (crosbug.com/p/7490) handle "%l" prefix for
* uint64_t */
v = va_arg(args, uint32_t);
switch (c) {
case 'd':
if ((int)v < 0) {
is_negative = 1;
v = -v;
}
break;
case 'u':
break;
case 'x':
case 'p':
base = 16;
break;
default:
format = error_str;
}
if (format == error_str)
continue; /* Bad format specifier */
/* Convert integer to string, starting at end of
* buffer and working backwards. */
vstr = intbuf + sizeof(intbuf) - 1;
*(vstr) = '\0';
if (!v)
*(--vstr) = '0';
while (v) {
*(--vstr) = int_chars[v % base];
v /= base;
}
if (is_negative)
*(--vstr) = '-';
}
/* Copy string (or stringified integer) */
vlen = strlen(vstr);
while (vlen < pad_width && !is_left) {
dropped_chars |= __tx_char(pad_zero ? '0' : ' ');
vlen++;
}
while (*vstr)
dropped_chars |= __tx_char(*vstr++);
while (vlen < pad_width && is_left) {
dropped_chars |= __tx_char(' ');
vlen++;
}
}
va_end(args);
if (was_empty)
uart_tx_start();
/* Successful if we consumed all output */
return dropped_chars ? EC_ERROR_OVERFLOW : EC_SUCCESS;
}
void uart_flush_output(void)
{
/* Wait for buffer to empty */
while (tx_buf_head != tx_buf_tail) {
/* It's possible we're in some other interrupt, and the
* previous context was doing a printf() or puts() but hadn't
* enabled the UART interrupt. Check if the interrupt is
* disabled, and if so, re-enable and trigger it. Note that
* this check is inside the while loop, so we'll be safe even
* if the context switches away from us to another partial
* printf() and back. */
if (uart_tx_stopped())
uart_tx_start();
}
/* Wait for transmit FIFO empty */
uart_tx_flush();
}
void uart_emergency_flush(void)
{
do {
/* Copy output from buffer until TX fifo full
* or output buffer empty
*/
while (uart_tx_ready() &&
(tx_buf_head != tx_buf_tail)) {
uart_write_char(tx_buf[tx_buf_tail]);
tx_buf_tail = TX_BUF_NEXT(tx_buf_tail);
}
/* Wait for transmit FIFO empty */
uart_tx_flush();
} while (tx_buf_head != tx_buf_tail);
}
void uart_flush_input(void)
{
/* Disable interrupts */
uart_disable_interrupt();
/* Empty the hardware FIFO */
uart_process();
/* Clear the input buffer */
rx_buf_tail = rx_buf_head;
/* Re-enable interrupts */
uart_enable_interrupt();
}
int uart_peek(int c)
{
int index = -1;
int i = 0;
/* Disable interrupts while we pull characters out, because the
* interrupt handler can also modify the tail pointer. */
uart_disable_interrupt();
/* Call interrupt handler to empty the hardware FIFO. The minimum
* FIFO trigger depth is 1/8 (2 chars), so this is the only way to
* ensure we've pulled the very last character out of the FIFO. */
uart_process();
for (i = rx_buf_tail; i != rx_buf_head; i = RX_BUF_NEXT(i)) {
if (rx_buf[i] == c) {
index = (RX_BUF_SIZE + i - rx_buf_tail) &
(RX_BUF_SIZE - 1);
break;
}
}
/* Re-enable interrupts */
uart_enable_interrupt();
return index;
}
int uart_getc(void)
{
int c;
/* Disable interrupts */
uart_disable_interrupt();
/* Call interrupt handler to empty the hardware FIFO */
uart_process();
if (rx_buf_tail == rx_buf_head) {
c = -1; /* No pending input */
} else {
c = rx_buf[rx_buf_tail];
rx_buf_tail = RX_BUF_NEXT(rx_buf_tail);
}
/* Re-enable interrupts */
uart_enable_interrupt();
return c;
}
int uart_gets(char *dest, int size)
{
int got = 0;
int c;
/* Disable interrupts while we pull characters out, because the
* interrupt handler can also modify the tail pointer. */
uart_disable_interrupt();
/* Call interrupt handler to empty the hardware FIFO */
uart_process();
/* Read characters */
while (got < size - 1 && rx_buf_tail != rx_buf_head) {
c = rx_buf[rx_buf_tail];
dest[got++] = c;
rx_buf_tail = RX_BUF_NEXT(rx_buf_tail);
if (c == '\n')
break; /* Stop on newline */
}
rx_buf_ptr = rx_buf_tail;
/* Re-enable interrupts */
uart_enable_interrupt();
/* Null-terminate */
dest[got] = '\0';
/* Return the length we got */
return got;
}