Files
OpenCellular/core/cortex-m/task.c
Vincent Palatin b081af1284 stm32f100: implement low power mode
When the AP is not running and we have enough time go to STOP mode
instead of simple idle.
The EC consumption should drop from 12mW to a few mW.

This is currently not activated by default, you need to type "sleepmask
0" in the EC console to activate it.

Signed-off-by: Vincent Palatin <vpalatin@chromium.org>

BUG=chrome-os-partner:8866
TEST=on Snow, check the software is still working properly when STOP
mode is activated and measure power consumption on 3v_alw rail.

Change-Id: I231d76fe6494c07b198c41694755b82d87c00e75
Reviewed-on: https://gerrit.chromium.org/gerrit/29315
Tested-by: Vincent Palatin <vpalatin@chromium.org>
Reviewed-by: Randall Spangler <rspangler@chromium.org>
Commit-Ready: Vincent Palatin <vpalatin@chromium.org>
2012-08-09 11:55:03 -07:00

618 lines
14 KiB
C

/* Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* Task scheduling / events module for Chrome EC operating system */
#include "config.h"
#include "atomic.h"
#include "console.h"
#include "cpu.h"
#include "link_defs.h"
#include "task.h"
#include "timer.h"
#include "uart.h"
#include "util.h"
/**
* Global memory size for a task : 512 bytes
* including its contexts and its stack
*/
#define TASK_SIZE_LOG2 9
#define TASK_SIZE (1<<TASK_SIZE_LOG2)
typedef union {
struct {
uint32_t sp; /* saved stack pointer for context switch */
uint32_t events; /* bitmaps of received events */
uint64_t runtime; /* Time spent in task */
uint32_t guard; /* Guard value to detect stack overflow */
uint8_t stack[0]; /* task stack */
};
uint32_t context[TASK_SIZE/4];
} task_;
/* declare task routine prototypes */
#define TASK(n, r, d) int r(void *);
#include TASK_LIST
void __idle(void);
CONFIG_TASK_LIST
#undef TASK
/* store the task names for easier debugging */
#define TASK(n, r, d) #n,
#include TASK_LIST
static const char * const task_names[] = {
"<< idle >>",
CONFIG_TASK_LIST
};
#undef TASK
#ifdef CONFIG_TASK_PROFILING
static uint64_t task_start_time; /* Time task scheduling started */
static uint64_t exc_start_time; /* Time of task->exception transition */
static uint64_t exc_end_time; /* Time of exception->task transition */
static uint64_t exc_total_time; /* Total time in exceptions */
static uint32_t svc_calls; /* Number of service calls */
static uint32_t task_switches; /* Number of times active task changed */
static uint32_t irq_dist[CONFIG_IRQ_COUNT]; /* Distribution of IRQ calls */
#endif
extern void __switchto(task_ *from, task_ *to);
extern int __task_start(int *task_stack_ready);
#ifndef CONFIG_LOW_POWER_IDLE
/* Idle task. Executed when no tasks are ready to be scheduled. */
void __idle(void)
{
/* Print when the idle task starts. This is the lowest priority task,
* so this only starts once all other tasks have gotten a chance to do
* their task inits and have gone to sleep. */
cprintf(CC_TASK, "[%T idle task started]\n");
while (1) {
/* Wait for the next irq event. This stops the CPU clock
* (sleep / deep sleep, depending on chip config). */
asm("wfi");
}
}
#endif /* !CONFIG_LOW_POWER_IDLE */
static void task_exit_trap(void)
{
int i = task_get_current();
cprintf(CC_TASK, "[%T Task %d (%s) exited!]\n", i, task_names[i]);
/* Exited tasks simply sleep forever */
while (1)
task_wait_event(-1);
}
#define GUARD_VALUE 0x12345678
/* Startup parameters for all tasks. */
#define TASK(n, r, d) { \
.r0 = (uint32_t)d, \
.pc = (uint32_t)r, \
},
#include TASK_LIST
static const struct {
uint32_t r0;
uint32_t pc;
} const tasks_init[] = {
TASK(IDLE, __idle, 0)
CONFIG_TASK_LIST
};
#undef TASK
/* Contexts and stacks for all tasks. */
static task_ tasks[TASK_ID_COUNT] __attribute__((section(".bss.tasks")))
__attribute__((aligned(TASK_SIZE)));
/* Reserve space to discard context on first context switch. This must
* immediately follow tasks, so that it is start-aligned to TASK_SIZE so that
* __get_current(scratchpad) == scratchpad. Note that aligned(TASK_SIZE) also
* size-aligns it, which wastes (512 - 17*4) bytes of RAM, so we simply put it
* in its own section which immediately follows .bss.tasks in ec.lds.S. */
uint32_t scratchpad[17] __attribute__((section(".bss.task_scratchpad")));
/* Should IRQs chain to svc_handler()? This should be set if either of the
* following is true:
*
* 1) Task scheduling has started, and task profiling is enabled. Task
* profiling does its tracking in svc_handler().
*
* 2) An event was set by an interrupt; this could result in a higher-priority
* task unblocking. After checking for a task switch, svc_handler() will clear
* the flag (unless profiling is also enabled; then the flag remains set). */
static int need_resched_or_profiling = 0;
/**
* bitmap of all tasks ready to be run
*
* Currently all tasks are enabled at startup.
*/
static uint32_t tasks_ready = (1<<TASK_ID_COUNT) - 1;
static int start_called; /* Has task swapping started */
static task_ *__get_current(void)
{
unsigned sp;
asm("mov %0, sp":"=r"(sp));
return (task_ *)((sp - 4) & ~(TASK_SIZE-1));
}
/**
* Return a pointer to the task preempted by the current exception
*
* designed to be called from interrupt context.
*/
static task_ *__get_task_scheduled(void)
{
unsigned sp;
asm("mrs %0, psp":"=r"(sp));
return (task_ *)((sp - 16) & ~(TASK_SIZE-1));
}
static inline task_ *__task_id_to_ptr(task_id_t id)
{
return tasks + id;
}
void interrupt_disable(void)
{
asm("cpsid i");
}
void interrupt_enable(void)
{
asm("cpsie i");
}
inline int in_interrupt_context(void)
{
int ret;
asm("mrs %0, ipsr \n" /* read exception number */
"lsl %0, #23 \n":"=r"(ret)); /* exception bits are the 9 LSB */
return ret;
}
inline int get_interrupt_context(void)
{
int ret;
asm("mrs %0, ipsr \n":"=r"(ret)); /* read exception number */
return ret & 0x1ff; /* exception bits are the 9 LSB */
}
task_id_t task_from_addr(uint32_t addr)
{
task_id_t id = (addr - (uint32_t)tasks) >> TASK_SIZE_LOG2;
if (id >= TASK_ID_COUNT)
id = TASK_ID_INVALID;
return id;
}
task_id_t task_get_current(void)
{
return task_from_addr((uint32_t)__get_current());
}
uint32_t *task_get_event_bitmap(task_id_t tskid)
{
task_ *tsk = __task_id_to_ptr(tskid);
return &tsk->events;
}
int task_start_called(void)
{
return start_called;
}
/* Scheduling system call */
void svc_handler(int desched, task_id_t resched)
{
task_ *current, *next;
#ifdef CONFIG_TASK_PROFILING
int exc = get_interrupt_context();
uint64_t t;
#endif
/* Push the priority to -1 until the return, to avoid being
* interrupted */
asm volatile("cpsid f\n"
"isb\n");
#ifdef CONFIG_TASK_PROFILING
/* SVCall isn't triggered via DECLARE_IRQ(), so it needs to track its
* start time explicitly. */
if (exc == 0xb) {
exc_start_time = get_time().val;
svc_calls++;
}
#endif
current = __get_task_scheduled();
#ifdef CONFIG_OVERFLOW_DETECT
ASSERT(current->guard == GUARD_VALUE);
#endif
if (desched && !current->events) {
/* Remove our own ready bit */
tasks_ready &= ~(1 << (current-tasks));
}
tasks_ready |= 1 << resched;
ASSERT(tasks_ready);
next = __task_id_to_ptr(31 - __builtin_clz(tasks_ready));
#ifdef CONFIG_TASK_PROFILING
/* Track time in interrupts */
t = get_time().val;
exc_total_time += (t - exc_start_time);
/* Bill the current task for time between the end of the last interrupt
* and the start of this one. */
current->runtime += (exc_start_time - exc_end_time);
exc_end_time = t;
#else
/* Don't chain here from interrupts until the next time an interrupt
* sets an event. */
need_resched_or_profiling = 0;
#endif
/* Nothing to do */
if (next == current)
return;
/* Switch to new task */
#ifdef CONFIG_TASK_PROFILING
task_switches++;
#endif
__switchto(current, next);
}
void __schedule(int desched, int resched)
{
register int p0 asm("r0") = desched;
register int p1 asm("r1") = resched;
/* TODO: remove hardcoded opcode. SWI is not compiled properly for
* ARMv7-M on our current chroot toolchain. */
asm(".hword 0xdf00 @swi 0"::"r"(p0),"r"(p1));
}
#ifdef CONFIG_TASK_PROFILING
void task_start_irq_handler(void *excep_return)
{
/* Get time before checking depth, in case this handler is
* pre-empted */
uint64_t t = get_time().val;
int irq = get_interrupt_context() - 16;
/* Track IRQ distribution. No need for atomic add, because an IRQ
* can't pre-empt itself. */
if (irq < ARRAY_SIZE(irq_dist))
irq_dist[irq]++;
/* Continue iff a rescheduling event happened or profiling is active,
* and we are not called from another exception (this must match the
* logic for when we chain to svc_handler() below). */
if (!need_resched_or_profiling || (((uint32_t)excep_return & 0xf) == 1))
return;
exc_start_time = t;
}
#endif
void task_resched_if_needed(void *excep_return)
{
/* Continue iff a rescheduling event happened or profiling is active,
* and we are not called from another exception. */
if (!need_resched_or_profiling || (((uint32_t)excep_return & 0xf) == 1))
return;
svc_handler(0, 0);
}
static uint32_t __wait_evt(int timeout_us, task_id_t resched)
{
task_ *tsk = __get_current();
task_id_t me = tsk - tasks;
uint32_t evt;
int ret;
ASSERT(!in_interrupt_context());
if (timeout_us > 0) {
timestamp_t deadline = get_time();
deadline.val += timeout_us;
ret = timer_arm(deadline, me);
ASSERT(ret == EC_SUCCESS);
}
while (!(evt = atomic_read_clear(&tsk->events)))
{
/* Remove ourself and get the next task in the scheduler */
__schedule(1, resched);
resched = TASK_ID_IDLE;
}
if (timeout_us > 0)
timer_cancel(me);
return evt;
}
uint32_t task_set_event(task_id_t tskid, uint32_t event, int wait)
{
task_ *receiver = __task_id_to_ptr(tskid);
ASSERT(receiver);
/* Set the event bit in the receiver message bitmap */
atomic_or(&receiver->events, event);
/* Re-schedule if priorities have changed */
if (in_interrupt_context()) {
/* The receiver might run again */
atomic_or(&tasks_ready, 1 << tskid);
#ifndef CONFIG_TASK_PROFILING
need_resched_or_profiling = 1;
#endif
} else {
if (wait)
return __wait_evt(-1, tskid);
else
__schedule(0, tskid);
}
return 0;
}
uint32_t task_wait_event(int timeout_us)
{
return __wait_evt(timeout_us, TASK_ID_IDLE);
}
void task_enable_irq(int irq)
{
CPU_NVIC_EN(irq / 32) = 1 << (irq % 32);
}
void task_disable_irq(int irq)
{
CPU_NVIC_DIS(irq / 32) = 1 << (irq % 32);
}
void task_clear_pending_irq(int irq)
{
CPU_NVIC_UNPEND(irq / 32) = 1 << (irq % 32);
}
void task_trigger_irq(int irq)
{
CPU_NVIC_SWTRIG = irq;
}
/* Initialize IRQs in the NVIC and set their priorities as defined by the
* DECLARE_IRQ statements. */
static void __nvic_init_irqs(void)
{
/* Get the IRQ priorities section from the linker */
int exc_calls = __irqprio_end - __irqprio;
int i;
/* Mask and clear all pending interrupts */
for (i = 0; i < 5; i++) {
CPU_NVIC_DIS(i) = 0xffffffff;
CPU_NVIC_UNPEND(i) = 0xffffffff;
}
/* Re-enable global interrupts in case they're disabled. On a reboot,
* they're already enabled; if we've jumped here from another image,
* they're not. */
interrupt_enable();
/* Set priorities */
for (i = 0; i < exc_calls; i++) {
uint8_t irq = __irqprio[i].irq;
uint8_t prio = __irqprio[i].priority;
uint32_t prio_shift = irq % 4 * 8 + 5;
CPU_NVIC_PRI(irq / 4) =
(CPU_NVIC_PRI(irq / 4) &
~(0x7 << prio_shift)) |
(prio << prio_shift);
}
}
void mutex_lock(struct mutex *mtx)
{
uint32_t value;
uint32_t id = 1 << task_get_current();
ASSERT(id != TASK_ID_INVALID);
atomic_or(&mtx->waiters, id);
do {
/* try to get the lock (set 1 into the lock field) */
__asm__ __volatile__(" ldrex %0, [%1]\n"
" teq %0, #0\n"
" it eq\n"
" strexeq %0, %2, [%1]\n"
: "=&r" (value)
: "r" (&mtx->lock), "r" (2) : "cc");
/* "value" is equals to 1 if the store conditional failed,
* 2 if somebody else owns the mutex, 0 else.
*/
if (value == 2) {
/* contention on the mutex */
task_wait_event(0);
}
} while (value);
atomic_clear(&mtx->waiters, id);
}
void mutex_unlock(struct mutex *mtx)
{
uint32_t waiters;
task_ *tsk = __get_current();
__asm__ __volatile__(" ldr %0, [%2]\n"
" str %3, [%1]\n"
: "=&r" (waiters)
: "r" (&mtx->lock), "r" (&mtx->waiters), "r" (0)
: "cc");
while (waiters) {
task_id_t id = 31 - __builtin_clz(waiters);
/* somebody is waiting on the mutex */
task_set_event(id, TASK_EVENT_MUTEX, 0);
waiters &= ~(1 << id);
}
/* Ensure no event is remaining from mutex wake-up */
atomic_clear(&tsk->events, TASK_EVENT_MUTEX);
}
void task_print_list(void)
{
int i;
ccputs("Task Ready Name Events Time (s)\n");
for (i = 0; i < TASK_ID_COUNT; i++) {
char is_ready = (tasks_ready & (1<<i)) ? 'R' : ' ';
ccprintf("%4d %c %-16s %08x %11.6ld\n", i, is_ready,
task_names[i], tasks[i].events, tasks[i].runtime);
if (in_interrupt_context())
uart_emergency_flush();
else
cflush();
}
}
#ifdef CONFIG_DEBUG
int command_task_info(int argc, char **argv)
{
#ifdef CONFIG_TASK_PROFILING
int total = 0;
int i;
#endif
task_print_list();
#ifdef CONFIG_TASK_PROFILING
ccputs("IRQ counts by type:\n");
cflush();
for (i = 0; i < ARRAY_SIZE(irq_dist); i++) {
if (irq_dist[i]) {
ccprintf("%4d %8d\n", i, irq_dist[i]);
total += irq_dist[i];
}
}
ccprintf("Service calls: %11d\n", svc_calls);
ccprintf("Total exceptions: %11d\n", total + svc_calls);
ccprintf("Task switches: %11d\n", task_switches);
ccprintf("Task switching started: %11.6ld s\n", task_start_time);
ccprintf("Time in tasks: %11.6ld s\n",
get_time().val - task_start_time);
ccprintf("Time in exceptions: %11.6ld s\n", exc_total_time);
#endif
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(taskinfo, command_task_info,
NULL,
"Print task info",
NULL);
static int command_task_ready(int argc, char **argv)
{
if (argc < 2) {
ccprintf("tasks_ready: 0x%08x\n", tasks_ready);
} else {
tasks_ready = strtoi(argv[1], NULL, 16);
ccprintf("Setting tasks_ready to 0x%08x\n", tasks_ready);
__schedule(0, 0);
}
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(taskready, command_task_ready,
"[setmask]",
"Print/set ready tasks",
NULL);
#endif /* CONFIG_DEBUG */
int task_pre_init(void)
{
int i;
/* fill the task memory with initial values */
for (i = 0; i < TASK_ID_COUNT; i++) {
tasks[i].sp = (uint32_t)(tasks + i + 1) - 64;
tasks[i].guard = GUARD_VALUE;
/* initial context on stack */
tasks[i].context[TASK_SIZE/4 - 8/*r0*/] = tasks_init[i].r0;
tasks[i].context[TASK_SIZE/4 - 3/*lr*/] =
(uint32_t)task_exit_trap;
tasks[i].context[TASK_SIZE/4 - 2/*pc*/] = tasks_init[i].pc;
tasks[i].context[TASK_SIZE/4 - 1/*psr*/] = 0x01000000;
}
/* Fill in guard value in scratchpad to prevent stack overflow
* detection failure on the first context switch. */
((task_ *)scratchpad)->guard = GUARD_VALUE;
/* sanity checks about static task invariants */
BUILD_ASSERT(TASK_ID_COUNT <= sizeof(unsigned) * 8);
BUILD_ASSERT(TASK_ID_COUNT < (1 << (sizeof(task_id_t) * 8)));
/* Initialize IRQs */
__nvic_init_irqs();
return EC_SUCCESS;
}
int task_start(void)
{
#ifdef CONFIG_TASK_PROFILING
task_start_time = exc_end_time = get_time().val;
#endif
start_called = 1;
return __task_start(&need_resched_or_profiling);
}