mirror of
https://github.com/Telecominfraproject/OpenCellular.git
synced 2026-01-09 17:11:42 +00:00
Signed-off-by: Randall Spangler <rspangler@chromium.org> BUG=chrome-os-partner:7461 TEST=manual make BOARD={bds,link,daisy} make tests flash link system and make sure it boots Change-Id: I1241a1895c083e387e38ddab01ac346ca4474eb9
322 lines
8.4 KiB
C
322 lines
8.4 KiB
C
/* Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
/* Thermal engine module for Chrome EC */
|
|
|
|
#include "board.h"
|
|
#include "chipset.h"
|
|
#include "console.h"
|
|
#include "gpio.h"
|
|
#include "lpc.h"
|
|
#include "lpc_commands.h"
|
|
#include "pwm.h"
|
|
#include "task.h"
|
|
#include "temp_sensor.h"
|
|
#include "thermal.h"
|
|
#include "timer.h"
|
|
#include "uart.h"
|
|
#include "util.h"
|
|
#include "x86_power.h"
|
|
|
|
/* Defined in board_temp_sensor.c. Must be in the same order as
|
|
* in enum temp_sensor_id.
|
|
*/
|
|
extern const struct temp_sensor_t temp_sensors[TEMP_SENSOR_COUNT];
|
|
|
|
/* Temperature threshold configuration. Must be in the same order as in
|
|
* enum temp_sensor_type. Threshold values for overheated action first.
|
|
* Followed by fan speed stepping thresholds. */
|
|
struct thermal_config_t thermal_config[TEMP_SENSOR_TYPE_COUNT] = {
|
|
/* TEMP_SENSOR_TYPE_CPU */
|
|
{THERMAL_CONFIG_WARNING_ON_FAIL,
|
|
{343, 348, 353, 318, 323, 328, 333, 338}},
|
|
/* TEMP_SENSOR_TYPE_BOARD */
|
|
{THERMAL_CONFIG_NO_FLAG, {THERMAL_THRESHOLD_DISABLE_ALL}},
|
|
/* TEMP_SENSOR_TYPE_CASE */
|
|
{THERMAL_CONFIG_NO_FLAG, {343, THERMAL_THRESHOLD_DISABLE, 358,
|
|
THERMAL_THRESHOLD_DISABLE_ALL}},
|
|
};
|
|
|
|
/* Fan speed settings. */
|
|
/* TODO: Currently temperature polling task sometimes hangs. So we should not
|
|
* turn off fan according to temperature readings. Modify this to turn off fan
|
|
* when we have reliable temperature readings. See crosbug.com/p/8479
|
|
*/
|
|
const int fan_speed[THERMAL_FAN_STEPS + 1] = {4000, 5000, 6000, 7000, 8000, -1};
|
|
|
|
/* Number of consecutive overheated events for each temperature sensor. */
|
|
static int8_t ot_count[TEMP_SENSOR_COUNT][THRESHOLD_COUNT + THERMAL_FAN_STEPS];
|
|
|
|
/* Flag that indicate if each threshold is reached.
|
|
* Note that higher threshold reached does not necessarily mean lower thresholds
|
|
* are reached (since we can disable any threshold.) */
|
|
static int8_t overheated[THRESHOLD_COUNT + THERMAL_FAN_STEPS];
|
|
static int8_t *fan_threshold_reached = overheated + THRESHOLD_COUNT;
|
|
|
|
static int fan_ctrl_on = 1;
|
|
|
|
|
|
int thermal_set_threshold(enum temp_sensor_type type, int threshold_id, int value)
|
|
{
|
|
if (threshold_id < 0 ||
|
|
threshold_id >= THRESHOLD_COUNT + THERMAL_FAN_STEPS)
|
|
return EC_ERROR_INVAL;
|
|
if (value < 0)
|
|
return EC_ERROR_INVAL;
|
|
|
|
thermal_config[type].thresholds[threshold_id] = value;
|
|
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
|
|
int thermal_get_threshold(enum temp_sensor_type type, int threshold_id)
|
|
{
|
|
if (threshold_id < 0 ||
|
|
threshold_id >= THRESHOLD_COUNT + THERMAL_FAN_STEPS)
|
|
return EC_ERROR_INVAL;
|
|
|
|
return thermal_config[type].thresholds[threshold_id];
|
|
}
|
|
|
|
|
|
int thermal_toggle_auto_fan_ctrl(int auto_fan_on)
|
|
{
|
|
fan_ctrl_on = auto_fan_on;
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
|
|
static void smi_overheated_warning(void)
|
|
{
|
|
lpc_set_host_events(
|
|
EC_LPC_HOST_EVENT_MASK(EC_LPC_HOST_EVENT_THERMAL_OVERLOAD));
|
|
}
|
|
|
|
|
|
static void smi_sensor_failure_warning(void)
|
|
{
|
|
lpc_set_host_events(
|
|
EC_LPC_HOST_EVENT_MASK(EC_LPC_HOST_EVENT_THERMAL));
|
|
}
|
|
|
|
|
|
static void overheated_action(void)
|
|
{
|
|
if (overheated[THRESHOLD_POWER_DOWN]) {
|
|
x86_power_force_shutdown();
|
|
return;
|
|
}
|
|
|
|
if (overheated[THRESHOLD_CPU_DOWN])
|
|
x86_power_cpu_overheated(1);
|
|
else {
|
|
x86_power_cpu_overheated(0);
|
|
if (overheated[THRESHOLD_WARNING])
|
|
smi_overheated_warning();
|
|
}
|
|
|
|
if (fan_ctrl_on) {
|
|
int i;
|
|
for (i = THERMAL_FAN_STEPS - 1; i >= 0; --i)
|
|
if (fan_threshold_reached[i])
|
|
break;
|
|
pwm_set_fan_target_rpm(fan_speed[i + 1]);
|
|
}
|
|
}
|
|
|
|
|
|
/* Update counter and check if the counter has reached delay limit.
|
|
* Note that we have 10 seconds delay to prevent one error value triggering
|
|
* overheated action. */
|
|
static inline void update_and_check_stat(int temp,
|
|
int sensor_id,
|
|
int threshold_id)
|
|
{
|
|
enum temp_sensor_type type = temp_sensors[sensor_id].type;
|
|
const struct thermal_config_t *config = thermal_config + type;
|
|
const int16_t threshold = config->thresholds[threshold_id];
|
|
|
|
if (threshold > 0 && temp >= threshold) {
|
|
++ot_count[sensor_id][threshold_id];
|
|
if (ot_count[sensor_id][threshold_id] >= 10) {
|
|
ot_count[sensor_id][threshold_id] = 10;
|
|
overheated[threshold_id] = 1;
|
|
}
|
|
}
|
|
else if (ot_count[sensor_id][threshold_id] >= 10 &&
|
|
temp >= threshold - 3) {
|
|
/* Once the threshold is reached, only if the temperature
|
|
* drops to 3 degrees below threshold do we deassert
|
|
* overheated signal. This is to prevent temperature
|
|
* oscillating around the threshold causing threshold
|
|
* keep being triggered. */
|
|
overheated[threshold_id] = 1;
|
|
} else
|
|
ot_count[sensor_id][threshold_id] = 0;
|
|
}
|
|
|
|
|
|
static void thermal_process(void)
|
|
{
|
|
int i, j;
|
|
int cur_temp;
|
|
|
|
for (i = 0; i < THRESHOLD_COUNT + THERMAL_FAN_STEPS; ++i)
|
|
overheated[i] = 0;
|
|
|
|
for (i = 0; i < TEMP_SENSOR_COUNT; ++i) {
|
|
enum temp_sensor_type type = temp_sensors[i].type;
|
|
int flag = thermal_config[type].config_flags;
|
|
|
|
if (!temp_sensor_powered(i))
|
|
continue;
|
|
|
|
cur_temp = temp_sensor_read(i);
|
|
|
|
/* Sensor failure. */
|
|
if (cur_temp == -1) {
|
|
if (flag & THERMAL_CONFIG_WARNING_ON_FAIL)
|
|
smi_sensor_failure_warning();
|
|
continue;
|
|
}
|
|
for (j = 0; j < THRESHOLD_COUNT + THERMAL_FAN_STEPS; ++j)
|
|
update_and_check_stat(cur_temp, i, j);
|
|
}
|
|
|
|
overheated_action();
|
|
}
|
|
|
|
|
|
void thermal_task(void)
|
|
{
|
|
while (1) {
|
|
thermal_process();
|
|
usleep(1000000);
|
|
}
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* Console commands */
|
|
|
|
static void print_thermal_config(enum temp_sensor_type type)
|
|
{
|
|
const struct thermal_config_t *config = thermal_config + type;
|
|
uart_printf("Sensor Type %d:\n", type);
|
|
uart_printf("\tWarning: %d K \n",
|
|
config->thresholds[THRESHOLD_WARNING]);
|
|
uart_printf("\tCPU Down: %d K \n",
|
|
config->thresholds[THRESHOLD_CPU_DOWN]);
|
|
uart_printf("\tPower Down: %d K \n",
|
|
config->thresholds[THRESHOLD_POWER_DOWN]);
|
|
}
|
|
|
|
|
|
static void print_fan_stepping(enum temp_sensor_type type)
|
|
{
|
|
const struct thermal_config_t *config = thermal_config + type;
|
|
int i;
|
|
|
|
uart_printf("Sensor Type %d:\n", type);
|
|
uart_printf("\tLowest speed: %d RPM\n", fan_speed[0]);
|
|
for (i = 0; i < THERMAL_FAN_STEPS; ++i)
|
|
uart_printf("\t%3d K: %d RPM\n",
|
|
config->thresholds[THRESHOLD_COUNT + i],
|
|
fan_speed[i+1]);
|
|
}
|
|
|
|
|
|
static int command_thermal_config(int argc, char **argv)
|
|
{
|
|
char *e;
|
|
int sensor_type, threshold_id, value;
|
|
|
|
if (argc != 2 && argc != 4) {
|
|
uart_puts("Usage: thermal <sensor_type> [<threshold_id> <value>]\n");
|
|
return EC_ERROR_UNKNOWN;
|
|
}
|
|
|
|
sensor_type = strtoi(argv[1], &e, 0);
|
|
if ((e && *e) || sensor_type < 0 ||
|
|
sensor_type >= TEMP_SENSOR_TYPE_COUNT) {
|
|
uart_puts("Bad sensor type ID.\n");
|
|
return EC_ERROR_UNKNOWN;
|
|
}
|
|
|
|
if (argc == 2) {
|
|
print_thermal_config(sensor_type);
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
threshold_id = strtoi(argv[2], &e, 0);
|
|
if ((e && *e) || threshold_id < 0 || threshold_id >= THRESHOLD_COUNT) {
|
|
uart_puts("Bad threshold ID.\n");
|
|
return EC_ERROR_UNKNOWN;
|
|
}
|
|
|
|
value = strtoi(argv[3], &e, 0);
|
|
if ((e && *e) || value < 0) {
|
|
uart_puts("Bad threshold value.\n");
|
|
return EC_ERROR_UNKNOWN;
|
|
}
|
|
|
|
thermal_config[sensor_type].thresholds[threshold_id] = value;
|
|
uart_printf("Setting threshold %d of sensor type %d to %d\n",
|
|
threshold_id, sensor_type, value);
|
|
|
|
return EC_SUCCESS;
|
|
}
|
|
DECLARE_CONSOLE_COMMAND(thermal, command_thermal_config);
|
|
|
|
|
|
static int command_fan_config(int argc, char **argv)
|
|
{
|
|
char *e;
|
|
int sensor_type, stepping_id, value;
|
|
|
|
if (argc != 2 && argc != 4) {
|
|
uart_puts("Usage: thermalfan <sensor_type> [<stepping_id> <value>]\n");
|
|
return EC_ERROR_UNKNOWN;
|
|
}
|
|
|
|
sensor_type = strtoi(argv[1], &e, 0);
|
|
if ((e && *e) || sensor_type < 0 ||
|
|
sensor_type >= TEMP_SENSOR_TYPE_COUNT) {
|
|
uart_puts("Bad sensor type ID.\n");
|
|
return EC_ERROR_UNKNOWN;
|
|
}
|
|
|
|
if (argc == 2) {
|
|
print_fan_stepping(sensor_type);
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
stepping_id = strtoi(argv[2], &e, 0);
|
|
if ((e && *e) || stepping_id < 0 || stepping_id >= THERMAL_FAN_STEPS) {
|
|
uart_puts("Bad stepping ID.\n");
|
|
return EC_ERROR_UNKNOWN;
|
|
}
|
|
|
|
value = strtoi(argv[3], &e, 0);
|
|
if ((e && *e) || value < 0) {
|
|
uart_puts("Bad threshold value.\n");
|
|
return EC_ERROR_UNKNOWN;
|
|
}
|
|
|
|
thermal_config[sensor_type].thresholds[THRESHOLD_COUNT + stepping_id] = value;
|
|
uart_printf("Setting fan step %d of sensor type %d to %d K\n",
|
|
stepping_id, sensor_type, value);
|
|
|
|
return EC_SUCCESS;
|
|
}
|
|
DECLARE_CONSOLE_COMMAND(thermalfan, command_fan_config);
|
|
|
|
|
|
static int command_thermal_auto_fan_ctrl(int argc, char **argv)
|
|
{
|
|
return thermal_toggle_auto_fan_ctrl(1);
|
|
}
|
|
DECLARE_CONSOLE_COMMAND(autofan, command_thermal_auto_fan_ctrl);
|