mirror of
https://github.com/Telecominfraproject/OpenCellular.git
synced 2025-11-24 02:05:01 +00:00
In AllocAndReadGptData() the code was changed to use the GPT header
to determine the LBA of the GPT entries. This change did not account
for devices that have an invalid header and it can attempt to read
from invalid block addresses on a device.
This commit happened here:
a2d72f7 vboot: cgpt: Refer to partition entries by entries_lba.
https://chromium-review.googlesource.com/213861
The subsequent steps in vboot, LoadKernel->GptInit->GptRepair will
fix a missing header and entries, so it is only necessary for one of
the headers to be valid.
This is commonly the case with a new USB stick that has an image
written to it as only the primary header will be valid in this case.
However it is also true if the primary header has been corrupted and
the secondary header is still valid.
The code has been changed to call CheckHeader() on the primary and
secondary headers before attempting to use the 'entries_lba' field
to read the entries from the device. AllocAndReadGptData() now only
fails if both headers are invalid.
A number of new unit tests are created to check for these failure
conditions. In order to support this I had to extend the vboot_kernel
test infrastructure to have a buffer for the mocked disk data instead
of just ignoring reads and writes. This is because many of the existing
tests assumed they could have an invalid GPT header and still pass.
Now that the header is checked it is necessary for a valid header to
be created before the tests can pass.
BUG=chrome-os-partner:32386
BRANCH=samus,auron
TEST=All unit tests pass when running 'make runtests'
In addition real-world testing was done by corrupting the primary
and/or secondary headers of USB stick to ensure that it will
successfully boot if one of the headers is valid.
Change-Id: I7f840a44742fa3ba9a124df29ab5749e4c5a40c1
Signed-off-by: Duncan Laurie <dlaurie@chromium.org>
Reviewed-on: https://chromium-review.googlesource.com/220757
Reviewed-by: Bill Richardson <wfrichar@chromium.org>
Reviewed-by: Nam Nguyen <namnguyen@chromium.org>
676 lines
20 KiB
C
676 lines
20 KiB
C
/* Copyright (c) 2013 The Chromium OS Authors. All rights reserved.
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*
|
|
* Functions for loading a kernel from disk.
|
|
* (Firmware portion)
|
|
*/
|
|
|
|
#include "sysincludes.h"
|
|
|
|
#include "cgptlib.h"
|
|
#include "cgptlib_internal.h"
|
|
#include "region.h"
|
|
#include "gbb_access.h"
|
|
#include "gbb_header.h"
|
|
#include "load_kernel_fw.h"
|
|
#include "utility.h"
|
|
#include "vboot_api.h"
|
|
#include "vboot_common.h"
|
|
#include "vboot_kernel.h"
|
|
|
|
#define KBUF_SIZE 65536 /* Bytes to read at start of kernel partition */
|
|
#define LOWEST_TPM_VERSION 0xffffffff
|
|
|
|
typedef enum BootMode {
|
|
kBootRecovery = 0, /* Recovery firmware, any dev switch position */
|
|
kBootNormal = 1, /* Normal boot - kernel must be verified */
|
|
kBootDev = 2 /* Developer boot - self-signed kernel ok */
|
|
} BootMode;
|
|
|
|
/**
|
|
* Allocate and read GPT data from the drive.
|
|
*
|
|
* The sector_bytes and drive_sectors fields should be filled on input. The
|
|
* primary and secondary header and entries are filled on output.
|
|
*
|
|
* Returns 0 if successful, 1 if error.
|
|
*/
|
|
int AllocAndReadGptData(VbExDiskHandle_t disk_handle, GptData *gptdata)
|
|
{
|
|
uint64_t entries_sectors = TOTAL_ENTRIES_SIZE / gptdata->sector_bytes;
|
|
int primary_valid = 0, secondary_valid = 0;
|
|
|
|
/* No data to be written yet */
|
|
gptdata->modified = 0;
|
|
|
|
/* Allocate all buffers */
|
|
gptdata->primary_header = (uint8_t *)VbExMalloc(gptdata->sector_bytes);
|
|
gptdata->secondary_header =
|
|
(uint8_t *)VbExMalloc(gptdata->sector_bytes);
|
|
gptdata->primary_entries = (uint8_t *)VbExMalloc(TOTAL_ENTRIES_SIZE);
|
|
gptdata->secondary_entries = (uint8_t *)VbExMalloc(TOTAL_ENTRIES_SIZE);
|
|
|
|
if (gptdata->primary_header == NULL ||
|
|
gptdata->secondary_header == NULL ||
|
|
gptdata->primary_entries == NULL ||
|
|
gptdata->secondary_entries == NULL)
|
|
return 1;
|
|
|
|
/* Read primary header from the drive, skipping the protective MBR */
|
|
if (0 != VbExDiskRead(disk_handle, 1, 1, gptdata->primary_header))
|
|
return 1;
|
|
|
|
/* Only read primary GPT if the primary header is valid */
|
|
GptHeader* primary_header = (GptHeader*)gptdata->primary_header;
|
|
if (0 == CheckHeader(primary_header, 0, gptdata->drive_sectors)) {
|
|
primary_valid = 1;
|
|
if (0 != VbExDiskRead(disk_handle,
|
|
primary_header->entries_lba,
|
|
entries_sectors,
|
|
gptdata->primary_entries))
|
|
return 1;
|
|
} else {
|
|
VBDEBUG(("Primary GPT header invalid!\n"));
|
|
}
|
|
|
|
/* Read secondary header from the end of the drive */
|
|
if (0 != VbExDiskRead(disk_handle, gptdata->drive_sectors - 1, 1,
|
|
gptdata->secondary_header))
|
|
return 1;
|
|
|
|
/* Only read secondary GPT if the secondary header is valid */
|
|
GptHeader* secondary_header = (GptHeader*)gptdata->secondary_header;
|
|
if (0 == CheckHeader(secondary_header, 1, gptdata->drive_sectors)) {
|
|
secondary_valid = 1;
|
|
if (0 != VbExDiskRead(disk_handle,
|
|
secondary_header->entries_lba,
|
|
entries_sectors,
|
|
gptdata->secondary_entries))
|
|
return 1;
|
|
} else {
|
|
VBDEBUG(("Secondary GPT header invalid!\n"));
|
|
}
|
|
|
|
/* Return 0 if least one GPT header was valid */
|
|
return (primary_valid || secondary_valid) ? 0 : 1;
|
|
}
|
|
|
|
/**
|
|
* Write any changes for the GPT data back to the drive, then free the buffers.
|
|
*
|
|
* Returns 0 if successful, 1 if error.
|
|
*/
|
|
int WriteAndFreeGptData(VbExDiskHandle_t disk_handle, GptData *gptdata)
|
|
{
|
|
int legacy = 0;
|
|
uint64_t entries_sectors = TOTAL_ENTRIES_SIZE / gptdata->sector_bytes;
|
|
int ret = 1;
|
|
|
|
/*
|
|
* TODO(namnguyen): Preserve padding between primary GPT header and
|
|
* its entries.
|
|
*/
|
|
uint64_t entries_lba = GPT_PMBR_SECTORS + GPT_HEADER_SECTORS;
|
|
if (gptdata->primary_header) {
|
|
GptHeader *h = (GptHeader *)(gptdata->primary_header);
|
|
entries_lba = h->entries_lba;
|
|
|
|
/*
|
|
* Avoid even looking at this data if we don't need to. We
|
|
* may in fact not have read it from disk if the read failed,
|
|
* and this avoids a valgrind complaint.
|
|
*/
|
|
if (gptdata->modified) {
|
|
legacy = !Memcmp(h->signature, GPT_HEADER_SIGNATURE2,
|
|
GPT_HEADER_SIGNATURE_SIZE);
|
|
}
|
|
if (gptdata->modified & GPT_MODIFIED_HEADER1) {
|
|
if (legacy) {
|
|
VBDEBUG(("Not updating GPT header 1: "
|
|
"legacy mode is enabled.\n"));
|
|
} else {
|
|
VBDEBUG(("Updating GPT header 1\n"));
|
|
if (0 != VbExDiskWrite(disk_handle, 1, 1,
|
|
gptdata->primary_header))
|
|
goto fail;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (gptdata->primary_entries) {
|
|
if (gptdata->modified & GPT_MODIFIED_ENTRIES1) {
|
|
if (legacy) {
|
|
VBDEBUG(("Not updating GPT entries 1: "
|
|
"legacy mode is enabled.\n"));
|
|
} else {
|
|
VBDEBUG(("Updating GPT entries 1\n"));
|
|
if (0 != VbExDiskWrite(disk_handle, entries_lba,
|
|
entries_sectors,
|
|
gptdata->primary_entries))
|
|
goto fail;
|
|
}
|
|
}
|
|
}
|
|
|
|
entries_lba = (gptdata->drive_sectors - entries_sectors -
|
|
GPT_HEADER_SECTORS);
|
|
if (gptdata->secondary_header) {
|
|
GptHeader *h = (GptHeader *)(gptdata->secondary_header);
|
|
entries_lba = h->entries_lba;
|
|
if (gptdata->modified & GPT_MODIFIED_HEADER2) {
|
|
VBDEBUG(("Updating GPT entries 2\n"));
|
|
if (0 != VbExDiskWrite(disk_handle,
|
|
gptdata->drive_sectors - 1, 1,
|
|
gptdata->secondary_header))
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
if (gptdata->secondary_entries) {
|
|
if (gptdata->modified & GPT_MODIFIED_ENTRIES2) {
|
|
VBDEBUG(("Updating GPT header 2\n"));
|
|
if (0 != VbExDiskWrite(disk_handle,
|
|
entries_lba, entries_sectors,
|
|
gptdata->secondary_entries))
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
ret = 0;
|
|
|
|
fail:
|
|
/* Avoid leaking memory on disk write failure */
|
|
if (gptdata->primary_header)
|
|
VbExFree(gptdata->primary_header);
|
|
if (gptdata->primary_entries)
|
|
VbExFree(gptdata->primary_entries);
|
|
if (gptdata->secondary_entries)
|
|
VbExFree(gptdata->secondary_entries);
|
|
if (gptdata->secondary_header)
|
|
VbExFree(gptdata->secondary_header);
|
|
|
|
/* Success */
|
|
return ret;
|
|
}
|
|
|
|
VbError_t LoadKernel(LoadKernelParams *params, VbCommonParams *cparams)
|
|
{
|
|
VbSharedDataHeader *shared =
|
|
(VbSharedDataHeader *)params->shared_data_blob;
|
|
VbSharedDataKernelCall *shcall = NULL;
|
|
VbNvContext* vnc = params->nv_context;
|
|
VbPublicKey* kernel_subkey = NULL;
|
|
int free_kernel_subkey = 0;
|
|
GptData gpt;
|
|
uint64_t part_start, part_size;
|
|
uint64_t blba;
|
|
uint64_t kbuf_sectors;
|
|
uint8_t* kbuf = NULL;
|
|
int found_partitions = 0;
|
|
int good_partition = -1;
|
|
int good_partition_key_block_valid = 0;
|
|
uint32_t lowest_version = LOWEST_TPM_VERSION;
|
|
int rec_switch, dev_switch;
|
|
BootMode boot_mode;
|
|
uint32_t require_official_os = 0;
|
|
|
|
VbError_t retval = VBERROR_UNKNOWN;
|
|
int recovery = VBNV_RECOVERY_LK_UNSPECIFIED;
|
|
|
|
/* Sanity Checks */
|
|
if (!params->bytes_per_lba ||
|
|
!params->ending_lba) {
|
|
VBDEBUG(("LoadKernel() called with invalid params\n"));
|
|
retval = VBERROR_INVALID_PARAMETER;
|
|
goto LoadKernelExit;
|
|
}
|
|
|
|
/* Clear output params in case we fail */
|
|
params->partition_number = 0;
|
|
params->bootloader_address = 0;
|
|
params->bootloader_size = 0;
|
|
|
|
/* Calculate switch positions and boot mode */
|
|
rec_switch = (BOOT_FLAG_RECOVERY & params->boot_flags ? 1 : 0);
|
|
dev_switch = (BOOT_FLAG_DEVELOPER & params->boot_flags ? 1 : 0);
|
|
if (rec_switch) {
|
|
boot_mode = kBootRecovery;
|
|
} else if (dev_switch) {
|
|
boot_mode = kBootDev;
|
|
VbNvGet(vnc, VBNV_DEV_BOOT_SIGNED_ONLY, &require_official_os);
|
|
} else {
|
|
boot_mode = kBootNormal;
|
|
}
|
|
|
|
/*
|
|
* Set up tracking for this call. This wraps around if called many
|
|
* times, so we need to initialize the call entry each time.
|
|
*/
|
|
shcall = shared->lk_calls + (shared->lk_call_count
|
|
& (VBSD_MAX_KERNEL_CALLS - 1));
|
|
Memset(shcall, 0, sizeof(VbSharedDataKernelCall));
|
|
shcall->boot_flags = (uint32_t)params->boot_flags;
|
|
shcall->boot_mode = boot_mode;
|
|
shcall->sector_size = (uint32_t)params->bytes_per_lba;
|
|
shcall->sector_count = params->ending_lba + 1;
|
|
shared->lk_call_count++;
|
|
|
|
/* Initialization */
|
|
blba = params->bytes_per_lba;
|
|
kbuf_sectors = KBUF_SIZE / blba;
|
|
if (0 == kbuf_sectors) {
|
|
VBDEBUG(("LoadKernel() called with sector size > KBUF_SIZE\n"));
|
|
retval = VBERROR_INVALID_PARAMETER;
|
|
goto LoadKernelExit;
|
|
}
|
|
|
|
if (kBootRecovery == boot_mode) {
|
|
/* Use the recovery key to verify the kernel */
|
|
retval = VbGbbReadRecoveryKey(cparams, &kernel_subkey);
|
|
if (VBERROR_SUCCESS != retval)
|
|
goto LoadKernelExit;
|
|
free_kernel_subkey = 1;
|
|
} else {
|
|
/* Use the kernel subkey passed from LoadFirmware(). */
|
|
kernel_subkey = &shared->kernel_subkey;
|
|
}
|
|
|
|
/* Read GPT data */
|
|
gpt.sector_bytes = (uint32_t)blba;
|
|
gpt.drive_sectors = params->ending_lba + 1;
|
|
if (0 != AllocAndReadGptData(params->disk_handle, &gpt)) {
|
|
VBDEBUG(("Unable to read GPT data\n"));
|
|
shcall->check_result = VBSD_LKC_CHECK_GPT_READ_ERROR;
|
|
goto bad_gpt;
|
|
}
|
|
|
|
/* Initialize GPT library */
|
|
if (GPT_SUCCESS != GptInit(&gpt)) {
|
|
VBDEBUG(("Error parsing GPT\n"));
|
|
shcall->check_result = VBSD_LKC_CHECK_GPT_PARSE_ERROR;
|
|
goto bad_gpt;
|
|
}
|
|
|
|
/* Allocate kernel header buffers */
|
|
kbuf = (uint8_t*)VbExMalloc(KBUF_SIZE);
|
|
if (!kbuf)
|
|
goto bad_gpt;
|
|
|
|
/* Loop over candidate kernel partitions */
|
|
while (GPT_SUCCESS ==
|
|
GptNextKernelEntry(&gpt, &part_start, &part_size)) {
|
|
VbSharedDataKernelPart *shpart = NULL;
|
|
VbKeyBlockHeader *key_block;
|
|
VbKernelPreambleHeader *preamble;
|
|
RSAPublicKey *data_key = NULL;
|
|
uint64_t key_version;
|
|
uint32_t combined_version;
|
|
uint64_t body_offset;
|
|
uint64_t body_offset_sectors;
|
|
uint64_t body_sectors;
|
|
int key_block_valid = 1;
|
|
|
|
VBDEBUG(("Found kernel entry at %" PRIu64 " size %" PRIu64 "\n",
|
|
part_start, part_size));
|
|
|
|
/*
|
|
* Set up tracking for this partition. This wraps around if
|
|
* called many times, so initialize the partition entry each
|
|
* time.
|
|
*/
|
|
shpart = shcall->parts + (shcall->kernel_parts_found
|
|
& (VBSD_MAX_KERNEL_PARTS - 1));
|
|
Memset(shpart, 0, sizeof(VbSharedDataKernelPart));
|
|
shpart->sector_start = part_start;
|
|
shpart->sector_count = part_size;
|
|
/*
|
|
* TODO: GPT partitions start at 1, but cgptlib starts them at
|
|
* 0. Adjust here, until cgptlib is fixed.
|
|
*/
|
|
shpart->gpt_index = (uint8_t)(gpt.current_kernel + 1);
|
|
shcall->kernel_parts_found++;
|
|
|
|
/* Found at least one kernel partition. */
|
|
found_partitions++;
|
|
|
|
/* Read the first part of the kernel partition. */
|
|
if (part_size < kbuf_sectors) {
|
|
VBDEBUG(("Partition too small to hold kernel.\n"));
|
|
shpart->check_result = VBSD_LKP_CHECK_TOO_SMALL;
|
|
goto bad_kernel;
|
|
}
|
|
|
|
if (0 != VbExDiskRead(params->disk_handle, part_start,
|
|
kbuf_sectors, kbuf)) {
|
|
VBDEBUG(("Unable to read start of partition.\n"));
|
|
shpart->check_result = VBSD_LKP_CHECK_READ_START;
|
|
goto bad_kernel;
|
|
}
|
|
|
|
/* Verify the key block. */
|
|
key_block = (VbKeyBlockHeader*)kbuf;
|
|
if (0 != KeyBlockVerify(key_block, KBUF_SIZE,
|
|
kernel_subkey, 0)) {
|
|
VBDEBUG(("Verifying key block signature failed.\n"));
|
|
shpart->check_result = VBSD_LKP_CHECK_KEY_BLOCK_SIG;
|
|
key_block_valid = 0;
|
|
|
|
/* If not in developer mode, this kernel is bad. */
|
|
if (kBootDev != boot_mode)
|
|
goto bad_kernel;
|
|
|
|
/*
|
|
* In developer mode, we can explictly disallow
|
|
* self-signed kernels
|
|
*/
|
|
if (require_official_os) {
|
|
VBDEBUG(("Self-signed kernels not enabled.\n"));
|
|
shpart->check_result =
|
|
VBSD_LKP_CHECK_SELF_SIGNED;
|
|
goto bad_kernel;
|
|
}
|
|
|
|
/*
|
|
* Allow the kernel if the SHA-512 hash of the key
|
|
* block is valid.
|
|
*/
|
|
if (0 != KeyBlockVerify(key_block, KBUF_SIZE,
|
|
kernel_subkey, 1)) {
|
|
VBDEBUG(("Verifying key block hash failed.\n"));
|
|
shpart->check_result =
|
|
VBSD_LKP_CHECK_KEY_BLOCK_HASH;
|
|
goto bad_kernel;
|
|
}
|
|
}
|
|
|
|
/* Check the key block flags against the current boot mode. */
|
|
if (!(key_block->key_block_flags &
|
|
(dev_switch ? KEY_BLOCK_FLAG_DEVELOPER_1 :
|
|
KEY_BLOCK_FLAG_DEVELOPER_0))) {
|
|
VBDEBUG(("Key block developer flag mismatch.\n"));
|
|
shpart->check_result = VBSD_LKP_CHECK_DEV_MISMATCH;
|
|
key_block_valid = 0;
|
|
}
|
|
if (!(key_block->key_block_flags &
|
|
(rec_switch ? KEY_BLOCK_FLAG_RECOVERY_1 :
|
|
KEY_BLOCK_FLAG_RECOVERY_0))) {
|
|
VBDEBUG(("Key block recovery flag mismatch.\n"));
|
|
shpart->check_result = VBSD_LKP_CHECK_REC_MISMATCH;
|
|
key_block_valid = 0;
|
|
}
|
|
|
|
/* Check for rollback of key version except in recovery mode. */
|
|
key_version = key_block->data_key.key_version;
|
|
if (kBootRecovery != boot_mode) {
|
|
if (key_version < (shared->kernel_version_tpm >> 16)) {
|
|
VBDEBUG(("Key version too old.\n"));
|
|
shpart->check_result =
|
|
VBSD_LKP_CHECK_KEY_ROLLBACK;
|
|
key_block_valid = 0;
|
|
}
|
|
if (key_version > 0xFFFF) {
|
|
/*
|
|
* Key version is stored in 16 bits in the TPM,
|
|
* so key versions greater than 0xFFFF can't be
|
|
* stored properly.
|
|
*/
|
|
VBDEBUG(("Key version > 0xFFFF.\n"));
|
|
shpart->check_result =
|
|
VBSD_LKP_CHECK_KEY_ROLLBACK;
|
|
key_block_valid = 0;
|
|
}
|
|
}
|
|
|
|
/* If not in developer mode, key block required to be valid. */
|
|
if (kBootDev != boot_mode && !key_block_valid) {
|
|
VBDEBUG(("Key block is invalid.\n"));
|
|
goto bad_kernel;
|
|
}
|
|
|
|
/* Get key for preamble/data verification from the key block. */
|
|
data_key = PublicKeyToRSA(&key_block->data_key);
|
|
if (!data_key) {
|
|
VBDEBUG(("Data key bad.\n"));
|
|
shpart->check_result = VBSD_LKP_CHECK_DATA_KEY_PARSE;
|
|
goto bad_kernel;
|
|
}
|
|
|
|
/* Verify the preamble, which follows the key block */
|
|
preamble = (VbKernelPreambleHeader *)
|
|
(kbuf + key_block->key_block_size);
|
|
if ((0 != VerifyKernelPreamble(
|
|
preamble,
|
|
KBUF_SIZE - key_block->key_block_size,
|
|
data_key))) {
|
|
VBDEBUG(("Preamble verification failed.\n"));
|
|
shpart->check_result = VBSD_LKP_CHECK_VERIFY_PREAMBLE;
|
|
goto bad_kernel;
|
|
}
|
|
|
|
/*
|
|
* If the key block is valid and we're not in recovery mode,
|
|
* check for rollback of the kernel version.
|
|
*/
|
|
combined_version = (uint32_t)(
|
|
(key_version << 16) |
|
|
(preamble->kernel_version & 0xFFFF));
|
|
shpart->combined_version = combined_version;
|
|
if (key_block_valid && kBootRecovery != boot_mode) {
|
|
if (combined_version < shared->kernel_version_tpm) {
|
|
VBDEBUG(("Kernel version too low.\n"));
|
|
shpart->check_result =
|
|
VBSD_LKP_CHECK_KERNEL_ROLLBACK;
|
|
/*
|
|
* If not in developer mode, kernel version
|
|
* must be valid.
|
|
*/
|
|
if (kBootDev != boot_mode)
|
|
goto bad_kernel;
|
|
}
|
|
}
|
|
|
|
VBDEBUG(("Kernel preamble is good.\n"));
|
|
shpart->check_result = VBSD_LKP_CHECK_PREAMBLE_VALID;
|
|
|
|
/* Check for lowest version from a valid header. */
|
|
if (key_block_valid && lowest_version > combined_version)
|
|
lowest_version = combined_version;
|
|
else {
|
|
VBDEBUG(("Key block valid: %d\n", key_block_valid));
|
|
VBDEBUG(("Combined version: %u\n",
|
|
(unsigned) combined_version));
|
|
}
|
|
|
|
/*
|
|
* If we already have a good kernel, no need to read another
|
|
* one; we only needed to look at the versions to check for
|
|
* rollback. So skip to the next kernel preamble.
|
|
*/
|
|
if (-1 != good_partition)
|
|
continue;
|
|
|
|
/* Verify kernel body starts at multiple of sector size. */
|
|
body_offset = key_block->key_block_size +
|
|
preamble->preamble_size;
|
|
if (0 != body_offset % blba) {
|
|
VBDEBUG(("Kernel body not at multiple of "
|
|
"sector size.\n"));
|
|
shpart->check_result = VBSD_LKP_CHECK_BODY_OFFSET;
|
|
goto bad_kernel;
|
|
}
|
|
body_offset_sectors = body_offset / blba;
|
|
|
|
body_sectors =
|
|
(preamble->body_signature.data_size + blba - 1) / blba;
|
|
if (!params->kernel_buffer) {
|
|
/* Get kernel load address and size from the header. */
|
|
params->kernel_buffer =
|
|
(void *)((long)preamble->body_load_address);
|
|
params->kernel_buffer_size = body_sectors * blba;
|
|
} else {
|
|
/* Verify kernel body fits in the buffer */
|
|
if (body_sectors * blba > params->kernel_buffer_size) {
|
|
VBDEBUG(("Kernel body doesn't "
|
|
"fit in memory.\n"));
|
|
shpart->check_result =
|
|
VBSD_LKP_CHECK_BODY_EXCEEDS_MEM;
|
|
goto bad_kernel;
|
|
}
|
|
}
|
|
|
|
/* Verify kernel body fits in the partition */
|
|
if (body_offset_sectors + body_sectors > part_size) {
|
|
VBDEBUG(("Kernel body doesn't fit in partition.\n"));
|
|
shpart->check_result = VBSD_LKP_CHECK_BODY_EXCEEDS_PART;
|
|
goto bad_kernel;
|
|
}
|
|
|
|
/* Read the kernel data */
|
|
if (0 != VbExDiskRead(params->disk_handle,
|
|
part_start + body_offset_sectors,
|
|
body_sectors, params->kernel_buffer)) {
|
|
VBDEBUG(("Unable to read kernel data.\n"));
|
|
shpart->check_result = VBSD_LKP_CHECK_READ_DATA;
|
|
goto bad_kernel;
|
|
}
|
|
|
|
/* Verify kernel data */
|
|
if (0 != VerifyData((const uint8_t *)params->kernel_buffer,
|
|
params->kernel_buffer_size,
|
|
&preamble->body_signature, data_key)) {
|
|
VBDEBUG(("Kernel data verification failed.\n"));
|
|
shpart->check_result = VBSD_LKP_CHECK_VERIFY_DATA;
|
|
goto bad_kernel;
|
|
}
|
|
|
|
/* Done with the kernel signing key, so can free it now */
|
|
RSAPublicKeyFree(data_key);
|
|
data_key = NULL;
|
|
|
|
/*
|
|
* If we're still here, the kernel is valid. Save the first
|
|
* good partition we find; that's the one we'll boot.
|
|
*/
|
|
VBDEBUG(("Partition is good.\n"));
|
|
shpart->check_result = VBSD_LKP_CHECK_KERNEL_GOOD;
|
|
if (key_block_valid)
|
|
shpart->flags |= VBSD_LKP_FLAG_KEY_BLOCK_VALID;
|
|
|
|
good_partition_key_block_valid = key_block_valid;
|
|
/*
|
|
* TODO: GPT partitions start at 1, but cgptlib starts them at
|
|
* 0. Adjust here, until cgptlib is fixed.
|
|
*/
|
|
good_partition = gpt.current_kernel + 1;
|
|
params->partition_number = gpt.current_kernel + 1;
|
|
GetCurrentKernelUniqueGuid(&gpt, ¶ms->partition_guid);
|
|
/*
|
|
* TODO: GetCurrentKernelUniqueGuid() should take a destination
|
|
* size, or the dest should be a struct, so we know it's big
|
|
* enough.
|
|
*/
|
|
params->bootloader_address = preamble->bootloader_address;
|
|
params->bootloader_size = preamble->bootloader_size;
|
|
|
|
/* Update GPT to note this is the kernel we're trying */
|
|
GptUpdateKernelEntry(&gpt, GPT_UPDATE_ENTRY_TRY);
|
|
|
|
/*
|
|
* If we're in recovery mode or we're about to boot a
|
|
* dev-signed kernel, there's no rollback protection, so we can
|
|
* stop at the first valid kernel.
|
|
*/
|
|
if (kBootRecovery == boot_mode || !key_block_valid) {
|
|
VBDEBUG(("In recovery mode or dev-signed kernel\n"));
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Otherwise, we do care about the key index in the TPM. If
|
|
* the good partition's key version is the same as the tpm,
|
|
* then the TPM doesn't need updating; we can stop now.
|
|
* Otherwise, we'll check all the other headers to see if they
|
|
* contain a newer key.
|
|
*/
|
|
if (combined_version == shared->kernel_version_tpm) {
|
|
VBDEBUG(("Same kernel version\n"));
|
|
break;
|
|
}
|
|
|
|
/* Continue, so that we skip the error handling code below */
|
|
continue;
|
|
|
|
bad_kernel:
|
|
/* Handle errors parsing this kernel */
|
|
if (NULL != data_key)
|
|
RSAPublicKeyFree(data_key);
|
|
|
|
VBDEBUG(("Marking kernel as invalid.\n"));
|
|
GptUpdateKernelEntry(&gpt, GPT_UPDATE_ENTRY_BAD);
|
|
|
|
|
|
} /* while(GptNextKernelEntry) */
|
|
|
|
bad_gpt:
|
|
|
|
/* Free kernel buffer */
|
|
if (kbuf)
|
|
VbExFree(kbuf);
|
|
|
|
/* Write and free GPT data */
|
|
WriteAndFreeGptData(params->disk_handle, &gpt);
|
|
|
|
/* Handle finding a good partition */
|
|
if (good_partition >= 0) {
|
|
VBDEBUG(("Good_partition >= 0\n"));
|
|
shcall->check_result = VBSD_LKC_CHECK_GOOD_PARTITION;
|
|
shared->kernel_version_lowest = lowest_version;
|
|
/*
|
|
* Sanity check - only store a new TPM version if we found one.
|
|
* If lowest_version is still at its initial value, we didn't
|
|
* find one; for example, we're in developer mode and just
|
|
* didn't look.
|
|
*/
|
|
if (lowest_version != LOWEST_TPM_VERSION &&
|
|
lowest_version > shared->kernel_version_tpm)
|
|
shared->kernel_version_tpm = lowest_version;
|
|
|
|
/* Success! */
|
|
retval = VBERROR_SUCCESS;
|
|
} else if (found_partitions > 0) {
|
|
shcall->check_result = VBSD_LKC_CHECK_INVALID_PARTITIONS;
|
|
recovery = VBNV_RECOVERY_RW_INVALID_OS;
|
|
retval = VBERROR_INVALID_KERNEL_FOUND;
|
|
} else {
|
|
shcall->check_result = VBSD_LKC_CHECK_NO_PARTITIONS;
|
|
recovery = VBNV_RECOVERY_RW_NO_OS;
|
|
retval = VBERROR_NO_KERNEL_FOUND;
|
|
}
|
|
|
|
LoadKernelExit:
|
|
|
|
/* Store recovery request, if any */
|
|
VbNvSet(vnc, VBNV_RECOVERY_REQUEST, VBERROR_SUCCESS != retval ?
|
|
recovery : VBNV_RECOVERY_NOT_REQUESTED);
|
|
|
|
/*
|
|
* If LoadKernel() was called with bad parameters, shcall may not be
|
|
* initialized.
|
|
*/
|
|
if (shcall)
|
|
shcall->return_code = (uint8_t)retval;
|
|
|
|
/* Save whether the good partition's key block was fully verified */
|
|
if (good_partition_key_block_valid)
|
|
shared->flags |= VBSD_KERNEL_KEY_VERIFIED;
|
|
|
|
/* Store how much shared data we used, if any */
|
|
params->shared_data_size = shared->data_used;
|
|
|
|
if (free_kernel_subkey)
|
|
VbExFree(kernel_subkey);
|
|
|
|
return retval;
|
|
}
|