mirror of
https://github.com/Telecominfraproject/OpenCellular.git
synced 2026-01-06 15:01:35 +00:00
The virtual battery "energy" readings were totally broken. Rather than reporting things in units of "10 mW" they were reporting things in units of "10 uW". That's because they were doing this math: result = mV * mA / 10 Said another way: result = (V / 1000) * (A / 1000) / 10 result = (V * A) / (100000) / 10 result = W / 1000000 / 10 result = uW / 10 Aside from the fact that clients were expecting things in "10 mW" instead of "10 uW", we got even more random results. That's because we return to the client in a 16-bit variable, so we were kinda randomly truncating things. Doh. BRANCH=ToT BUG=chromium:717304 TEST=power_supply_info Unfortunately when you try to report sane values for "10 uA" in a 16-bit result, it doesn't work too well ( Change-Id: I8075dffd7ab6b372be5b8fdf293acc96c5878036 Signed-off-by: Douglas Anderson <dianders@chromium.org> Reviewed-on: https://chromium-review.googlesource.com/492546 Reviewed-by: Aseda Aboagye <aaboagye@chromium.org> (cherry picked from commit 01ceab68cd6b542f8c6355425e6ac6da698e0ebf) Reviewed-on: https://chromium-review.googlesource.com/492568 Commit-Ready: Aseda Aboagye <aaboagye@chromium.org> Tested-by: Aseda Aboagye <aaboagye@chromium.org>
263 lines
6.3 KiB
C
263 lines
6.3 KiB
C
/* Copyright 2016 The Chromium OS Authors. All rights reserved.
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
/* Virtual battery cross-platform code for Chrome EC */
|
|
|
|
#include "battery.h"
|
|
#include "charge_state.h"
|
|
#include "i2c.h"
|
|
#include "system.h"
|
|
#include "util.h"
|
|
#include "virtual_battery.h"
|
|
|
|
/* Console output macros */
|
|
#define CPUTS(outstr) cputs(CC_I2C, outstr)
|
|
#define CPRINTS(format, args...) cprints(CC_I2C, format, ## args)
|
|
|
|
/*
|
|
* The state machine used to parse smart battery command
|
|
* to support virtual battery.
|
|
*/
|
|
enum batt_cmd_parse_state {
|
|
IDLE = 0, /* initial state */
|
|
START = 1, /* received the register address (command code) */
|
|
WRITE_VB, /* writing data bytes to the slave */
|
|
READ_VB, /* reading data bytes to the slave */
|
|
};
|
|
|
|
static enum batt_cmd_parse_state sb_cmd_state;
|
|
static uint8_t cache_hit;
|
|
static const uint8_t *batt_cmd_head;
|
|
static int acc_write_len;
|
|
|
|
int virtual_battery_handler(struct ec_response_i2c_passthru *resp,
|
|
int in_len, int *err_code, int xferflags,
|
|
int read_len, int write_len,
|
|
const uint8_t *out)
|
|
{
|
|
|
|
#if defined(CONFIG_BATTERY_PRESENT_GPIO) || \
|
|
defined(CONFIG_BATTERY_PRESENT_CUSTOM)
|
|
/*
|
|
* If the battery isn't present, return a NAK (which we
|
|
* would have gotten anyways had we attempted to talk to
|
|
* the battery.)
|
|
*/
|
|
if (battery_is_present() != BP_YES) {
|
|
resp->i2c_status = EC_I2C_STATUS_NAK;
|
|
return EC_ERROR_INVAL;
|
|
}
|
|
#endif
|
|
switch (sb_cmd_state) {
|
|
case IDLE:
|
|
/*
|
|
* A legal battery command must start
|
|
* with a i2c write for reg index.
|
|
*/
|
|
if (write_len == 0) {
|
|
resp->i2c_status = EC_I2C_STATUS_NAK;
|
|
return EC_ERROR_INVAL;
|
|
}
|
|
/* Record the head of battery command. */
|
|
batt_cmd_head = out;
|
|
sb_cmd_state = START;
|
|
*err_code = 0;
|
|
break;
|
|
case START:
|
|
if (write_len > 0) {
|
|
sb_cmd_state = WRITE_VB;
|
|
*err_code = 0;
|
|
} else {
|
|
sb_cmd_state = READ_VB;
|
|
/* Test if the reg is cached. */
|
|
*err_code = virtual_battery_operation(batt_cmd_head,
|
|
NULL, 0, 0);
|
|
/*
|
|
* If the reg is not cached in the virtual memory,
|
|
* we need to physically write the reg index to
|
|
* the battery.
|
|
*/
|
|
if (*err_code) {
|
|
*err_code = i2c_xfer(
|
|
I2C_PORT_VIRTUAL_BATTERY,
|
|
VIRTUAL_BATTERY_ADDR,
|
|
batt_cmd_head,
|
|
1,
|
|
NULL,
|
|
0,
|
|
I2C_XFER_START);
|
|
/* sent a stop bit here */
|
|
if (*err_code) {
|
|
if (*err_code == EC_ERROR_TIMEOUT) {
|
|
resp->i2c_status =
|
|
EC_I2C_STATUS_TIMEOUT;
|
|
} else {
|
|
resp->i2c_status =
|
|
EC_I2C_STATUS_NAK;
|
|
}
|
|
reset_parse_state();
|
|
return EC_ERROR_INVAL;
|
|
}
|
|
*err_code = 1;
|
|
} else
|
|
cache_hit = 1;
|
|
}
|
|
break;
|
|
case WRITE_VB:
|
|
if (write_len == 0) {
|
|
resp->i2c_status = EC_I2C_STATUS_NAK;
|
|
reset_parse_state();
|
|
return EC_ERROR_INVAL;
|
|
}
|
|
*err_code = 0;
|
|
break;
|
|
case READ_VB:
|
|
if (read_len == 0) {
|
|
resp->i2c_status = EC_I2C_STATUS_NAK;
|
|
reset_parse_state();
|
|
return EC_ERROR_INVAL;
|
|
}
|
|
/*
|
|
* Do not send the command to battery
|
|
* if the reg is cached.
|
|
*/
|
|
if (cache_hit)
|
|
*err_code = 0;
|
|
break;
|
|
default:
|
|
reset_parse_state();
|
|
return EC_ERROR_INVAL;
|
|
}
|
|
|
|
acc_write_len += write_len;
|
|
|
|
/* the last message */
|
|
if (xferflags & I2C_XFER_STOP) {
|
|
switch (sb_cmd_state) {
|
|
/* write to virtual battery */
|
|
case START:
|
|
case WRITE_VB:
|
|
virtual_battery_operation(batt_cmd_head,
|
|
&resp->data[in_len],
|
|
0,
|
|
acc_write_len);
|
|
break;
|
|
/* read from virtual battery */
|
|
case READ_VB:
|
|
if (cache_hit) {
|
|
virtual_battery_operation(batt_cmd_head,
|
|
&resp->data[0],
|
|
in_len + read_len,
|
|
0);
|
|
}
|
|
break;
|
|
default:
|
|
reset_parse_state();
|
|
return EC_ERROR_INVAL;
|
|
|
|
}
|
|
/* Reset the state in the end of messages */
|
|
reset_parse_state();
|
|
}
|
|
return EC_RES_SUCCESS;
|
|
}
|
|
|
|
void reset_parse_state(void)
|
|
{
|
|
sb_cmd_state = IDLE;
|
|
cache_hit = 0;
|
|
acc_write_len = 0;
|
|
}
|
|
|
|
int virtual_battery_operation(const uint8_t *batt_cmd_head,
|
|
uint8_t *dest,
|
|
int read_len,
|
|
int write_len)
|
|
{
|
|
int val;
|
|
/*
|
|
* We cache battery operational mode locally for both read and write
|
|
* commands. If MODE_CAPACITY bit is set, battery capacity will be
|
|
* reported in 10mW/10mWh, instead of the default unit, mA/mAh.
|
|
* Note that we don't update the cached capacity: We do a real-time
|
|
* conversion and return the converted values.
|
|
*/
|
|
static uint16_t batt_mode_cache;
|
|
const struct batt_params *curr_batt;
|
|
|
|
curr_batt = charger_current_battery_params();
|
|
switch (*batt_cmd_head) {
|
|
case SB_BATTERY_MODE:
|
|
if (write_len == 3) {
|
|
batt_mode_cache = batt_cmd_head[1] |
|
|
(batt_cmd_head[2] << 8);
|
|
} else if (read_len > 0) {
|
|
if (batt_mode_cache == 0) {
|
|
/*
|
|
* Read the battery operational mode from
|
|
* the battery to initialize batt_mode_cache.
|
|
*/
|
|
i2c_xfer(I2C_PORT_VIRTUAL_BATTERY,
|
|
VIRTUAL_BATTERY_ADDR,
|
|
batt_cmd_head,
|
|
1,
|
|
(uint8_t *)&batt_mode_cache,
|
|
2,
|
|
I2C_XFER_SINGLE);
|
|
}
|
|
memcpy(dest, &batt_mode_cache, read_len);
|
|
}
|
|
break;
|
|
case SB_SERIAL_NUMBER:
|
|
val = strtoi(host_get_memmap(EC_MEMMAP_BATT_SERIAL), NULL, 16);
|
|
memcpy(dest, &val, read_len);
|
|
break;
|
|
case SB_VOLTAGE:
|
|
memcpy(dest, &(curr_batt->voltage), read_len);
|
|
break;
|
|
case SB_RELATIVE_STATE_OF_CHARGE:
|
|
memcpy(dest, &(curr_batt->state_of_charge), read_len);
|
|
break;
|
|
case SB_TEMPERATURE:
|
|
memcpy(dest, &(curr_batt->temperature), read_len);
|
|
break;
|
|
case SB_CURRENT:
|
|
memcpy(dest, &(curr_batt->current), read_len);
|
|
break;
|
|
case SB_FULL_CHARGE_CAPACITY:
|
|
val = curr_batt->full_capacity;
|
|
if (batt_mode_cache & MODE_CAPACITY)
|
|
val = val * curr_batt->voltage / 10000;
|
|
memcpy(dest, &val, read_len);
|
|
break;
|
|
case SB_BATTERY_STATUS:
|
|
memcpy(dest, &(curr_batt->status), read_len);
|
|
break;
|
|
case SB_CYCLE_COUNT:
|
|
memcpy(dest, (int *)host_get_memmap(EC_MEMMAP_BATT_CCNT),
|
|
read_len);
|
|
break;
|
|
case SB_DESIGN_CAPACITY:
|
|
val = *(int *)host_get_memmap(EC_MEMMAP_BATT_DCAP);
|
|
if (batt_mode_cache & MODE_CAPACITY)
|
|
val = val * curr_batt->voltage / 10000;
|
|
memcpy(dest, &val, read_len);
|
|
break;
|
|
case SB_DESIGN_VOLTAGE:
|
|
memcpy(dest, (int *)host_get_memmap(EC_MEMMAP_BATT_DVLT),
|
|
read_len);
|
|
break;
|
|
case SB_REMAINING_CAPACITY:
|
|
val = curr_batt->remaining_capacity;
|
|
if (batt_mode_cache & MODE_CAPACITY)
|
|
val = val * curr_batt->voltage / 10000;
|
|
memcpy(dest, &val, read_len);
|
|
break;
|
|
default:
|
|
return EC_ERROR_INVAL;
|
|
}
|
|
return EC_SUCCESS;
|
|
}
|