Files
OpenCellular/common/temp_sensor.c
Vic Yang 938649ac67 Change temperature sensor debug command behaviour
Currently, 'tempsinfo' command would abort when encountering problems
reading temperature sensor info. Change this command to continue reading
succeeding sensors.

Also change 'temps' to show temperature in both 'K' and 'C' for better
reading and easier debugging.

BUG=chrome-os-partner:7527
TEST=none

Change-Id: I41a4068fb58804cb000e6725c0894aabd0104119
Signed-off-by: Vic Yang <victoryang@chromium.org>
2012-02-14 22:30:47 +08:00

254 lines
6.3 KiB
C

/* Copyright (c) 2011 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* Temperature sensor module for Chrome EC */
#include "i2c.h"
#include "temp_sensor.h"
#include "uart.h"
#include "util.h"
#include "console.h"
#include "board.h"
/* Defined in board_temp_sensor.c. Must be in the same order as
* in enum temp_sensor_id.
*/
extern const struct temp_sensor_t temp_sensors[TEMP_SENSOR_COUNT];
int temp_sensor_read(enum temp_sensor_id id)
{
const struct temp_sensor_t *sensor;
if (id < 0 || id >= TEMP_SENSOR_COUNT)
return -1;
sensor = temp_sensors + id;
return sensor->read(sensor);
}
int temp_sensor_tmp006_read_die_temp(const struct temp_sensor_t* sensor)
{
int traw, t;
int rv;
int addr = sensor->addr;
rv = i2c_read16(TMP006_PORT(addr), TMP006_REG(addr), 0x01, &traw);
if (rv)
return -1;
t = (int)(int16_t)traw / 128;
return t + 273;
}
/* Calculate the remote object temperature.
* Parameters:
* Tdie: Die temperature in 1/100 K.
* Vobj: Voltage read from register 0. In nV.
* S0: Sensitivity factor in 1/1000.
* Return:
* Object temperature in 1/100 K.
*/
int temp_sensor_tmp006_calculate_object_temp(int Tdie, int Vobj, int S0)
{
int32_t Tx, S19, Vos, Vx, fv9, ub, lb;
/* Calculate according to TMP006 users guide.
* Division is delayed when possible to preserve precision, but should
* not cause overflow.
* Assuming Tdie is between 200K and 400K, and S0 between 3e-14 and
* 9e-14, the maximum value during the calculation should be less than
* (1 << 30), which fits in int32_t.
*/
Tx = Tdie - 29815;
/* S19 is the sensitivity multipled by 1e19 */
S19 = S0 * (100000 + 175 * Tx / 100 -
1678 * Tx / 100 * Tx / 100000) / 1000;
/* Vos is the offset voltage in nV */
Vos = -29400 - 570 * Tx / 100 + 463 * Tx / 100 * Tx / 10000;
Vx = Vobj - Vos;
/* fv9 is Seebeck coefficient f(Vobj) multipled by 1e9 */
fv9 = Vx + 134 * Vx / 100000 * Vx / 100000;
/* The last step in the calculation involves square root, so we use
* binary search.
* Assuming the object temperature is between 200K and 400K, the search
* should take at most 14 iterations.
*/
ub = 40000;
lb = 20000;
while (lb != ub) {
int32_t t, rhs, lhs;
t = (ub + lb) / 2;
lhs = t / 100 * t / 10000 * t / 10000 * (S19/100) / 1000 * t;
rhs = Tdie / 100 * Tdie / 10000 * Tdie / 10000 * (S19/100) / 1000 *
Tdie + fv9 * 1000;
if (lhs > rhs)
ub = t;
else
lb = t + 1;
}
return ub;
}
int temp_sensor_tmp006_read_object_temp(const struct temp_sensor_t* sensor)
{
int traw, t;
int vraw, v;
int rv;
int addr = sensor->addr;
rv = i2c_read16(TMP006_PORT(addr), TMP006_REG(addr), 0x01, &traw);
if (rv)
return -1;
t = (int)(int16_t)traw / 128 + 273;
rv = i2c_read16(TMP006_PORT(addr), TMP006_REG(addr), 0x00, &vraw);
if (rv)
return -1;
v = ((int)(int16_t)vraw * 15625) / 100;
return temp_sensor_tmp006_calculate_object_temp(t * 100, v, 6400);
}
void temp_sensor_tmp006_config(const struct temp_sensor_t* sensor)
{
int addr = sensor->addr;
/* Configure the sensor:
* 0x7000 = bits 14:12 = continuous conversion
* 0x0400 = bits 11:9 = ADC conversion rate (1/sec)
* 0x0100 = bit 8 = DRDY pin enabled */
/* TODO: support shutdown mode for power-saving? */
i2c_write16(TMP006_PORT(addr), TMP006_REG(addr), 0x02, 0x7500);
}
int temp_sensor_tmp006_print(const struct temp_sensor_t* sensor)
{
int vraw, v;
int traw, t;
int rv;
int d;
int addr = sensor->addr;
uart_printf("Debug data from %s:\n", sensor->name);
rv = i2c_read16(TMP006_PORT(addr), TMP006_REG(addr), 0xfe, &d);
if (rv)
return rv;
uart_printf(" Manufacturer ID: 0x%04x\n", d);
rv = i2c_read16(TMP006_PORT(addr), TMP006_REG(addr), 0xff, &d);
uart_printf(" Device ID: 0x%04x\n", d);
rv = i2c_read16(TMP006_PORT(addr), TMP006_REG(addr), 0x02, &d);
uart_printf(" Config: 0x%04x\n", d);
rv = i2c_read16(TMP006_PORT(addr), TMP006_REG(addr), 0x00, &vraw);
v = ((int)(int16_t)vraw * 15625) / 100;
uart_printf(" Voltage: 0x%04x = %d nV\n", vraw, v);
rv = i2c_read16(TMP006_PORT(addr), TMP006_REG(addr), 0x01, &traw);
t = ((int)(int16_t)traw * 100) / 128;
uart_printf(" Temperature: 0x%04x = %d.%02d C\n",
traw, t / 100, t > 0 ? t % 100 : 100 - (t % 100));
return EC_SUCCESS;
}
/*****************************************************************************/
/* Console commands */
static int command_temps(int argc, char **argv)
{
int i;
int rv = 0;
int t;
uart_puts("Reading temperature sensors...\n");
for (i = 0; i < TEMP_SENSOR_COUNT; ++i) {
uart_printf(" Temp from %s: ", temp_sensors[i].name);
t = temp_sensor_read(i);
if (t < 0) {
uart_printf("Error.\n\n");
rv = -1;
}
else
uart_printf("%d K = %d C\n\n", t, t - 273);
}
if (rv == -1)
return EC_ERROR_UNKNOWN;
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(temps, command_temps);
static int command_sensor_info(int argc, char **argv)
{
int i;
int rv, rv1;
const struct temp_sensor_t* sensor;
rv1 = EC_SUCCESS;
for (i = 0; i < TEMP_SENSOR_COUNT; ++i) {
sensor = temp_sensors + i;
if (sensor->print == TEMP_SENSOR_NO_PRINT)
continue;
rv = sensor->print(sensor);
if (rv != EC_SUCCESS)
rv1 = rv;
}
return rv1;
}
DECLARE_CONSOLE_COMMAND(tempsinfo, command_sensor_info);
/* TMP006 object temperature calculation command.
* TODO: This command is only for debugging. Remove it when temporal correciton
* is done.
*/
static int command_sensor_remote(int argc, char **argv)
{
char *e;
int32_t Td2, Vobj9, Sm03;
if (argc != 4) {
uart_puts("Usage: tempcorrect <Tdie*100> <Vobj*10^9> <S0*10^11>\n");
return EC_ERROR_UNKNOWN;
}
Td2 = strtoi(argv[1], &e, 0);
if (e && *e) {
uart_puts("Bad Tdie.\n");
return EC_ERROR_UNKNOWN;
}
Vobj9 = strtoi(argv[2], &e, 0);
if (e && *e) {
uart_puts("Bad Vobj.\n");
return EC_ERROR_UNKNOWN;
}
Sm03 = strtoi(argv[3], &e, 0);
if (e && *e) {
uart_puts("Bad S0.\n");
return EC_ERROR_UNKNOWN;
}
uart_printf("%d\n",
temp_sensor_tmp006_calculate_object_temp(Td2, Vobj9, Sm03));
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(tempremote, command_sensor_remote);
/*****************************************************************************/
/* Initialization */
int temp_sensor_init(void)
{
return EC_SUCCESS;
}