Files
OpenCellular/common/charge_state.c
Vic Yang f322e1b96a Set power LED to green when we are trickle charging nearly full
When battery is nearly full, battery sometimes demands for very low
current and we are actually trickle charging. This causes the last part
of charging process very long, but the actual charged amount is only few
mAh. Let's set power LED to green in this case so that user doesn't feel
the device is charging forever.

BUG=chrome-os-partner:11248
TEST=Charge the battery to nearly full. Disconnect and connect AC power.
     Check the power LED is green when we are trickle charging.

Change-Id: Ide108778232e9f1d3abe6b61af7518af25040d10
Reviewed-on: https://gerrit.chromium.org/gerrit/27264
Commit-Ready: Vic Yang <victoryang@chromium.org>
Tested-by: Vic Yang <victoryang@chromium.org>
Reviewed-by: Vic Yang <victoryang@chromium.org>
Reviewed-by: Randall Spangler <rspangler@chromium.org>
2012-07-18 09:31:27 -07:00

653 lines
17 KiB
C

/* Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*
* Battery charging task and state machine.
*/
#include "battery.h"
#include "battery_pack.h"
#include "charge_state.h"
#include "charger.h"
#include "chipset.h"
#include "common.h"
#include "console.h"
#include "gpio.h"
#include "host_command.h"
#include "power_button.h"
#include "power_led.h"
#include "printf.h"
#include "smart_battery.h"
#include "system.h"
#include "timer.h"
#include "util.h"
#include "x86_power.h"
/* Console output macros */
#define CPUTS(outstr) cputs(CC_CHARGER, outstr)
#define CPRINTF(format, args...) cprintf(CC_CHARGER, format, ## args)
/* Stop charge when state of charge reaches this percentage */
#define STOP_CHARGE_THRESHOLD 100
/* Voltage debounce time */
#define DEBOUNCE_TIME (10 * SECOND)
static const char * const state_name[] = POWER_STATE_NAME_TABLE;
static int state_machine_force_idle = 0;
static inline int is_charger_expired(
struct power_state_context *ctx, timestamp_t now)
{
return now.val - ctx->charger_update_time.val > CHARGER_UPDATE_PERIOD;
}
static inline void update_charger_time(
struct power_state_context *ctx, timestamp_t now)
{
ctx->charger_update_time.val = now.val;
}
/* Battery information used to fill ACPI _BIF and/or _BIX */
static void update_battery_info(void)
{
char *batt_str;
int batt_serial;
/* Design Capacity of Full */
battery_design_capacity((int *)host_get_memmap(EC_MEMMAP_BATT_DCAP));
/* Design Voltage */
battery_design_voltage((int *)host_get_memmap(EC_MEMMAP_BATT_DVLT));
/* Last Full Charge Capacity */
battery_full_charge_capacity(
(int *)host_get_memmap(EC_MEMMAP_BATT_LFCC));
/* Cycle Count */
battery_cycle_count((int *)host_get_memmap(EC_MEMMAP_BATT_CCNT));
/* Battery Manufacturer string */
batt_str = (char *)host_get_memmap(EC_MEMMAP_BATT_MFGR);
memset(batt_str, 0, EC_MEMMAP_TEXT_MAX);
battery_manufacturer_name(batt_str, EC_MEMMAP_TEXT_MAX);
/* Battery Model string */
batt_str = (char *)host_get_memmap(EC_MEMMAP_BATT_MODEL);
memset(batt_str, 0, EC_MEMMAP_TEXT_MAX);
battery_device_name(batt_str, EC_MEMMAP_TEXT_MAX);
/* Battery Type string */
batt_str = (char *)host_get_memmap(EC_MEMMAP_BATT_TYPE);
battery_device_chemistry(batt_str, EC_MEMMAP_TEXT_MAX);
/* Smart battery serial number is 16 bits */
batt_str = (char *)host_get_memmap(EC_MEMMAP_BATT_SERIAL);
memset(batt_str, 0, EC_MEMMAP_TEXT_MAX);
if (battery_serial_number(&batt_serial) == 0)
snprintf(batt_str, EC_MEMMAP_TEXT_MAX, "%04X", batt_serial);
/* Battery data is now present */
*host_get_memmap(EC_MEMMAP_BATTERY_VERSION) = 1;
}
/* Prevent battery from going into deep discharge state */
static void poweroff_wait_ac(void)
{
/* Shutdown the main processor */
if (chipset_in_state(CHIPSET_STATE_ON)) {
/* chipset_force_state(CHIPSET_STATE_SOFT_OFF);
* TODO(rong): remove platform dependent code
*/
#ifdef CONFIG_TASK_X86POWER
x86_power_force_shutdown();
#endif /* CONFIG_TASK_X86POWER */
}
}
/* Common handler for charging states.
* This handler gets battery charging parameters, charger state, ac state,
* and timestamp. It also fills memory map and issues power events on state
* change.
*/
static int state_common(struct power_state_context *ctx)
{
int rv, d;
struct power_state_data *curr = &ctx->curr;
struct power_state_data *prev = &ctx->prev;
struct batt_params *batt = &ctx->curr.batt;
uint8_t *batt_flags = ctx->memmap_batt_flags;
/* Copy previous state and init new state */
ctx->prev = ctx->curr;
curr->ts = get_time();
curr->error = 0;
/* Detect AC change */
curr->ac = power_ac_present();
if (curr->ac != prev->ac) {
if (curr->ac) {
/* AC on
* Initialize charger to power on reset mode
*/
rv = charger_post_init();
if (rv)
curr->error |= F_CHARGER_INIT;
host_set_single_event(EC_HOST_EVENT_AC_CONNECTED);
} else {
/* AC off */
host_set_single_event(EC_HOST_EVENT_AC_DISCONNECTED);
}
}
if (curr->ac) {
*batt_flags |= EC_BATT_FLAG_AC_PRESENT;
rv = charger_get_voltage(&curr->charging_voltage);
if (rv) {
charger_set_voltage(0);
charger_set_current(0);
curr->error |= F_CHARGER_VOLTAGE;
}
rv = charger_get_current(&curr->charging_current);
if (rv) {
charger_set_voltage(0);
charger_set_current(0);
curr->error |= F_CHARGER_CURRENT;
}
} else {
*batt_flags &= ~EC_BATT_FLAG_AC_PRESENT;
/* AC disconnected should get us out of force idle mode. */
state_machine_force_idle = 0;
}
rv = battery_temperature(&batt->temperature);
if (rv) {
/* Check low battery condition and retry */
if (curr->ac && !(curr->error & F_CHARGER_MASK) &&
(curr->charging_voltage == 0 ||
curr->charging_current == 0)) {
charger_set_voltage(ctx->battery->voltage_min);
charger_set_current(ctx->charger->current_min);
usleep(SECOND);
rv = battery_temperature(&batt->temperature);
}
}
if (rv)
curr->error |= F_BATTERY_TEMPERATURE;
rv = battery_voltage(&batt->voltage);
if (rv)
curr->error |= F_BATTERY_VOLTAGE;
*ctx->memmap_batt_volt = batt->voltage;
rv = battery_current(&batt->current);
if (rv)
curr->error |= F_BATTERY_CURRENT;
/* Memory mapped value: discharge rate */
*ctx->memmap_batt_rate = batt->current < 0 ?
-batt->current : batt->current;
rv = battery_desired_voltage(&batt->desired_voltage);
if (rv)
curr->error |= F_DESIRED_VOLTAGE;
rv = battery_desired_current(&batt->desired_current);
if (rv)
curr->error |= F_DESIRED_CURRENT;
rv = battery_state_of_charge(&batt->state_of_charge);
if (rv)
curr->error |= F_BATTERY_STATE_OF_CHARGE;
/* Prevent deep discharging */
if (!curr->ac)
if ((batt->state_of_charge < BATTERY_LEVEL_SHUTDOWN &&
!(curr->error & F_BATTERY_STATE_OF_CHARGE)) ||
(batt->voltage <= ctx->battery->voltage_min &&
!(curr->error & F_BATTERY_VOLTAGE)))
poweroff_wait_ac();
/* Check battery presence */
if (curr->error & F_BATTERY_MASK) {
*ctx->memmap_batt_flags &= ~EC_BATT_FLAG_BATT_PRESENT;
return curr->error;
}
*ctx->memmap_batt_flags |= EC_BATT_FLAG_BATT_PRESENT;
/* Battery charge level low */
if (batt->state_of_charge <= BATTERY_LEVEL_LOW &&
prev->batt.state_of_charge > BATTERY_LEVEL_LOW)
host_set_single_event(EC_HOST_EVENT_BATTERY_LOW);
/* Battery charge level critical */
if (batt->state_of_charge <= BATTERY_LEVEL_CRITICAL) {
*ctx->memmap_batt_flags |= EC_BATT_FLAG_LEVEL_CRITICAL;
/* Send battery critical host event */
if (prev->batt.state_of_charge > BATTERY_LEVEL_CRITICAL)
host_set_single_event(EC_HOST_EVENT_BATTERY_CRITICAL);
} else
*ctx->memmap_batt_flags &= ~EC_BATT_FLAG_LEVEL_CRITICAL;
/* Apply battery pack vendor charging method */
battery_vendor_params(batt);
#ifdef CONFIG_CHARGING_CURRENT_LIMIT
if (batt->desired_current > CONFIG_CHARGING_CURRENT_LIMIT)
batt->desired_current = CONFIG_CHARGING_CURRENT_LIMIT;
#endif
rv = battery_get_battery_mode(&d);
if (rv) {
curr->error |= F_BATTERY_MODE;
} else {
if (d & MODE_CAPACITY) {
/* Battery capacity mode was set to mW
* reset it back to mAh
*/
d &= ~MODE_CAPACITY;
rv = battery_set_battery_mode(d);
if (rv)
ctx->curr.error |= F_BATTERY_MODE;
}
}
rv = battery_remaining_capacity(&d);
if (rv)
ctx->curr.error |= F_BATTERY_CAPACITY;
else
*ctx->memmap_batt_cap = d;
return ctx->curr.error;
}
/* Init state handler
* - check ac, charger, battery and temperature
* - initialize charger
* - new states: DISCHARGE, IDLE
*/
static enum power_state state_init(struct power_state_context *ctx)
{
/* Set LED to green first, other states should change it as desired. */
ctx->curr.led_color = POWERLED_GREEN;
/* Stop charger, unconditionally */
charger_set_current(0);
charger_set_voltage(0);
/* If AC is not present, switch to discharging state */
if (!ctx->curr.ac)
return PWR_STATE_DISCHARGE;
/* Check general error conditions */
if (ctx->curr.error)
return PWR_STATE_ERROR;
/* Update static battery info */
update_battery_info();
/* Send battery event to host */
host_set_single_event(EC_HOST_EVENT_BATTERY);
return PWR_STATE_IDLE;
}
/* Idle state handler
* - both charger and battery are online
* - detect charger and battery status change
* - new states: CHARGE, INIT
*/
static enum power_state state_idle(struct power_state_context *ctx)
{
struct batt_params *batt = &ctx->curr.batt;
const struct charger_info *c_info = ctx->charger;
/* If we are forcing idle mode, then just stay in IDLE. */
if (state_machine_force_idle) {
if (ctx->prev.led_color == POWERLED_GREEN)
ctx->curr.led_color = POWERLED_OFF;
else
ctx->curr.led_color = POWERLED_GREEN;
return PWR_STATE_UNCHANGE;
}
ctx->curr.led_color = POWERLED_GREEN;
if (!ctx->curr.ac)
return PWR_STATE_INIT;
if (ctx->curr.error)
return PWR_STATE_ERROR;
/* Prevent charging in idle mode */
if (ctx->curr.charging_voltage ||
ctx->curr.charging_current)
return PWR_STATE_INIT;
if (ctx->curr.batt.state_of_charge >= STOP_CHARGE_THRESHOLD)
return PWR_STATE_UNCHANGE;
/* Configure init charger state and switch to charge state */
if (ctx->curr.batt.desired_voltage &&
ctx->curr.batt.desired_current) {
/* Set charger output constraints */
if (batt->desired_current < ctx->charger->current_min) {
/* Trickle charging */
if (charger_set_current(c_info->current_min) ||
charger_set_voltage(batt->voltage))
return PWR_STATE_ERROR;
ctx->trickle_charging_time = get_time();
} else {
/* Normal charging */
if (charger_set_voltage(batt->desired_voltage) ||
charger_set_current(batt->desired_current))
return PWR_STATE_ERROR;
}
update_charger_time(ctx, get_time());
return PWR_STATE_CHARGE;
}
return PWR_STATE_UNCHANGE;
}
/* Charge state handler
* - detect battery status change
* - new state: INIT
*/
static enum power_state state_charge(struct power_state_context *ctx)
{
struct power_state_data *curr = &ctx->curr;
struct batt_params *batt = &ctx->curr.batt;
const struct charger_info *c_info = ctx->charger;
int debounce = 0;
timestamp_t now;
curr->led_color = POWERLED_YELLOW;
if (curr->error)
return PWR_STATE_ERROR;
if (batt->desired_current < c_info->current_min &&
batt->desired_current > 0)
return trickle_charge(ctx);
/* Check charger reset */
if (curr->charging_voltage == 0 ||
curr->charging_current == 0)
return PWR_STATE_INIT;
if (!curr->ac)
return PWR_STATE_INIT;
if (batt->state_of_charge >= STOP_CHARGE_THRESHOLD) {
if (charger_set_voltage(0) || charger_set_current(0))
return PWR_STATE_ERROR;
return PWR_STATE_IDLE;
}
now = get_time();
if (batt->desired_voltage != curr->charging_voltage) {
if (charger_set_voltage(batt->desired_voltage))
return PWR_STATE_ERROR;
update_charger_time(ctx, now);
}
if (batt->desired_current == curr->charging_current) {
/* Tick charger watchdog */
if (!is_charger_expired(ctx, now))
return PWR_STATE_UNCHANGE;
} else if (batt->desired_current > curr->charging_current) {
if (!timestamp_expired(ctx->voltage_debounce_time, &now))
return PWR_STATE_UNCHANGE;
} else {
/* Debounce charging current on falling edge */
debounce = 1;
}
if (charger_set_current(batt->desired_current))
return PWR_STATE_ERROR;
/* Update charger watchdog timer and debounce timer */
update_charger_time(ctx, now);
if (debounce)
ctx->voltage_debounce_time.val = now.val + DEBOUNCE_TIME;
return PWR_STATE_UNCHANGE;
}
/* Discharge state handler
* - detect ac status
* - new state: INIT
*/
static enum power_state state_discharge(struct power_state_context *ctx)
{
struct batt_params *batt = &ctx->curr.batt;
ctx->curr.led_color = POWERLED_OFF;
if (ctx->curr.ac)
return PWR_STATE_INIT;
if (ctx->curr.error)
return PWR_STATE_ERROR;
/* Overtemp in discharging state
* - poweroff host and ec
*/
if (batt->temperature > ctx->battery->temp_discharge_max ||
batt->temperature < ctx->battery->temp_discharge_min)
poweroff_wait_ac();
return PWR_STATE_UNCHANGE;
}
/* Error state handler
* - check charger and battery communication
* - log error
* - new state: INIT
*/
static enum power_state state_error(struct power_state_context *ctx)
{
static int logged_error;
ctx->curr.led_color = POWERLED_RED;
if (!ctx->curr.error) {
logged_error = 0;
return PWR_STATE_INIT;
}
/* Debug output */
if (ctx->curr.error != logged_error) {
CPRINTF("[Charge error: flag[%08b -> %08b], ac %d, "
" charger %s, battery %s\n",
logged_error, ctx->curr.error, ctx->curr.ac,
(ctx->curr.error & F_CHARGER_MASK) ?
"(err)" : "ok",
(ctx->curr.error & F_BATTERY_MASK) ?
"(err)" : "ok");
logged_error = ctx->curr.error;
}
return PWR_STATE_UNCHANGE;
}
static void charging_progress(struct power_state_context *ctx)
{
int seconds, minutes;
if (ctx->curr.batt.state_of_charge !=
ctx->prev.batt.state_of_charge) {
if (ctx->curr.ac)
battery_time_to_full(&minutes);
else
battery_time_to_empty(&minutes);
CPRINTF("[Battery %3d%% / %dh:%d]\n",
ctx->curr.batt.state_of_charge,
minutes / 60, minutes % 60);
return;
}
if (ctx->curr.charging_voltage != ctx->prev.charging_voltage &&
ctx->trickle_charging_time.val) {
/* Calculating minutes by dividing usec by 60 million
* GNU toolchain generate architecture dependent calls
* instead of machine code when the divisor is large.
* Hence following calculation was broke into 2 lines.
*/
seconds = (int)(get_time().val -
ctx->trickle_charging_time.val) / (int)SECOND;
minutes = seconds / 60;
CPRINTF("[Precharge CHG(%dmV) BATT(%dmV %dmA) "
"%dh:%d]\n", ctx->curr.charging_voltage,
ctx->curr.batt.voltage, ctx->curr.batt.current,
minutes / 60, minutes % 60);
}
}
static int enter_force_idle_mode(void)
{
if (!power_ac_present())
return EC_ERROR_UNKNOWN;
state_machine_force_idle = 1;
charger_post_init();
return EC_SUCCESS;
}
/* Battery charging task */
void charge_state_machine_task(void)
{
struct power_state_context ctx;
timestamp_t ts;
int sleep_usec = POLL_PERIOD_SHORT, diff_usec, sleep_next;
enum power_state new_state;
uint8_t batt_flags;
int rv_setled = 0;
ctx.prev.state = PWR_STATE_INIT;
ctx.curr.state = PWR_STATE_INIT;
ctx.prev.led_color = POWERLED_OFF;
ctx.curr.led_color = POWERLED_OFF;
ctx.trickle_charging_time.val = 0;
ctx.battery = battery_get_info();
ctx.charger = charger_get_info();
/* Setup LPC direct memmap */
ctx.memmap_batt_volt =
(uint32_t *)host_get_memmap(EC_MEMMAP_BATT_VOLT);
ctx.memmap_batt_rate =
(uint32_t *)host_get_memmap(EC_MEMMAP_BATT_RATE);
ctx.memmap_batt_cap =
(uint32_t *)host_get_memmap(EC_MEMMAP_BATT_CAP);
ctx.memmap_batt_flags = host_get_memmap(EC_MEMMAP_BATT_FLAG);
while (1) {
state_common(&ctx);
switch (ctx.prev.state) {
case PWR_STATE_INIT:
new_state = state_init(&ctx);
break;
case PWR_STATE_IDLE:
new_state = state_idle(&ctx);
break;
case PWR_STATE_DISCHARGE:
new_state = state_discharge(&ctx);
break;
case PWR_STATE_CHARGE:
new_state = state_charge(&ctx);
break;
case PWR_STATE_ERROR:
new_state = state_error(&ctx);
break;
default:
CPRINTF("[Undefined charging state %d]\n",
ctx.curr.state);
ctx.curr.state = PWR_STATE_ERROR;
new_state = PWR_STATE_ERROR;
}
if (state_machine_force_idle &&
ctx.prev.state != PWR_STATE_IDLE &&
ctx.prev.state != PWR_STATE_INIT)
new_state = PWR_STATE_INIT;
if (new_state) {
ctx.curr.state = new_state;
CPRINTF("[Charge state %s -> %s]\n",
state_name[ctx.prev.state],
state_name[new_state]);
}
if ((ctx.curr.led_color != ctx.prev.led_color || rv_setled) &&
new_state != PWR_STATE_DISCHARGE)
rv_setled = powerled_set(ctx.curr.led_color);
switch (new_state) {
case PWR_STATE_IDLE:
batt_flags = *ctx.memmap_batt_flags;
batt_flags &= ~EC_BATT_FLAG_CHARGING;
batt_flags &= ~EC_BATT_FLAG_DISCHARGING;
*ctx.memmap_batt_flags = batt_flags;
sleep_usec = POLL_PERIOD_LONG;
break;
case PWR_STATE_DISCHARGE:
batt_flags = *ctx.memmap_batt_flags;
batt_flags &= ~EC_BATT_FLAG_CHARGING;
batt_flags |= EC_BATT_FLAG_DISCHARGING;
*ctx.memmap_batt_flags = batt_flags;
sleep_usec = POLL_PERIOD_LONG;
break;
case PWR_STATE_CHARGE:
batt_flags = *ctx.memmap_batt_flags;
batt_flags |= EC_BATT_FLAG_CHARGING;
batt_flags &= ~EC_BATT_FLAG_DISCHARGING;
*ctx.memmap_batt_flags = batt_flags;
sleep_usec = POLL_PERIOD_CHARGE;
break;
case PWR_STATE_ERROR:
sleep_usec = POLL_PERIOD_CHARGE;
break;
case PWR_STATE_UNCHANGE:
/* Don't change sleep duration */
break;
default:
/* Other state; poll quickly and hope it goes away */
sleep_usec = POLL_PERIOD_SHORT;
}
/* Show charging progress in console */
charging_progress(&ctx);
ts = get_time();
diff_usec = (int)(ts.val - ctx.curr.ts.val);
sleep_next = sleep_usec - diff_usec;
if (sleep_next < MIN_SLEEP_USEC)
sleep_next = MIN_SLEEP_USEC;
if (sleep_next > MAX_SLEEP_USEC)
sleep_next = MAX_SLEEP_USEC;
usleep(sleep_next);
}
}
static int charge_command_force_idle(struct host_cmd_handler_args *args)
{
if (system_is_locked())
return EC_RES_ACCESS_DENIED;
if (enter_force_idle_mode() != EC_SUCCESS)
return EC_RES_ERROR;
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_CHARGE_FORCE_IDLE, charge_command_force_idle,
EC_VER_MASK(0));