mirror of
https://github.com/Telecominfraproject/OpenCellular.git
synced 2026-01-08 16:41:55 +00:00
This mostly reuses chip drivers for STM32F and STM32F0. Since this chip doesn't fit either STM32F or STM32F0, let's use symlink to specify which drivers to use for STM32F3. This is just the preparatory work and it's not verified on a chip yet. BUG=chrome-os-partner:32660 TEST=make buildall to make sure this doesn't break anything BRANCH=None Change-Id: I709ed49265e8f84552251a97d03b9b98496de99e Signed-off-by: Vic Yang <victoryang@chromium.org> Reviewed-on: https://chromium-review.googlesource.com/221412 Reviewed-by: Randall Spangler <rspangler@chromium.org> Reviewed-by: Alec Berg <alecaberg@chromium.org> Reviewed-by: Vincent Palatin <vpalatin@chromium.org>
450 lines
12 KiB
C
450 lines
12 KiB
C
/* Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
/* Hardware timers driver */
|
|
|
|
#include "clock.h"
|
|
#include "common.h"
|
|
#include "hooks.h"
|
|
#include "hwtimer.h"
|
|
#include "panic.h"
|
|
#include "registers.h"
|
|
#include "task.h"
|
|
#include "timer.h"
|
|
#include "watchdog.h"
|
|
|
|
/*
|
|
* Trigger select mapping for slave timer from master timer. This is
|
|
* unfortunately not very straightforward; there's no tidy way to do this
|
|
* algorithmically. To avoid burning memory for a lookup table, use macros to
|
|
* compute the offset. This also has the benefit that compilation will fail if
|
|
* an unsupported master/slave pairing is used.
|
|
*/
|
|
#ifdef CHIP_FAMILY_STM32F0
|
|
/*
|
|
* Slave Master
|
|
* 1 15 2 3 17
|
|
* 2 1 15 3 14
|
|
* 3 1 2 15 14
|
|
* 15 2 3 16 17
|
|
* --------------------
|
|
* ts = 0 1 2 3
|
|
*/
|
|
#define STM32_TIM_TS_SLAVE_1_MASTER_15 0
|
|
#define STM32_TIM_TS_SLAVE_1_MASTER_2 1
|
|
#define STM32_TIM_TS_SLAVE_1_MASTER_3 2
|
|
#define STM32_TIM_TS_SLAVE_1_MASTER_17 3
|
|
#define STM32_TIM_TS_SLAVE_2_MASTER_1 0
|
|
#define STM32_TIM_TS_SLAVE_2_MASTER_15 1
|
|
#define STM32_TIM_TS_SLAVE_2_MASTER_3 2
|
|
#define STM32_TIM_TS_SLAVE_2_MASTER_14 3
|
|
#define STM32_TIM_TS_SLAVE_3_MASTER_1 0
|
|
#define STM32_TIM_TS_SLAVE_3_MASTER_2 1
|
|
#define STM32_TIM_TS_SLAVE_3_MASTER_15 2
|
|
#define STM32_TIM_TS_SLAVE_3_MASTER_14 3
|
|
#define STM32_TIM_TS_SLAVE_15_MASTER_2 0
|
|
#define STM32_TIM_TS_SLAVE_15_MASTER_3 1
|
|
#define STM32_TIM_TS_SLAVE_15_MASTER_16 2
|
|
#define STM32_TIM_TS_SLAVE_15_MASTER_17 3
|
|
#elif defined(CHIP_FAMILY_STM32F3)
|
|
/*
|
|
* Slave Master
|
|
* 2 19 15 3 14
|
|
* 3 19 2 5 14
|
|
* 4 19 2 3 15
|
|
* 5 2 3 4 15
|
|
* 12 4 5 13 14
|
|
* 19 2 3 15 16
|
|
* ---------------------
|
|
* ts = 0 1 2 3
|
|
*/
|
|
#define STM32_TIM_TS_SLAVE_2_MASTER_19 0
|
|
#define STM32_TIM_TS_SLAVE_2_MASTER_15 1
|
|
#define STM32_TIM_TS_SLAVE_2_MASTER_3 2
|
|
#define STM32_TIM_TS_SLAVE_2_MASTER_14 3
|
|
#define STM32_TIM_TS_SLAVE_3_MASTER_19 0
|
|
#define STM32_TIM_TS_SLAVE_3_MASTER_2 1
|
|
#define STM32_TIM_TS_SLAVE_3_MASTER_5 2
|
|
#define STM32_TIM_TS_SLAVE_3_MASTER_14 3
|
|
#define STM32_TIM_TS_SLAVE_4_MASTER_19 0
|
|
#define STM32_TIM_TS_SLAVE_4_MASTER_2 1
|
|
#define STM32_TIM_TS_SLAVE_4_MASTER_3 2
|
|
#define STM32_TIM_TS_SLAVE_4_MASTER_15 3
|
|
#define STM32_TIM_TS_SLAVE_5_MASTER_2 0
|
|
#define STM32_TIM_TS_SLAVE_5_MASTER_3 1
|
|
#define STM32_TIM_TS_SLAVE_5_MASTER_4 2
|
|
#define STM32_TIM_TS_SLAVE_5_MASTER_15 3
|
|
#define STM32_TIM_TS_SLAVE_12_MASTER_4 0
|
|
#define STM32_TIM_TS_SLAVE_12_MASTER_5 1
|
|
#define STM32_TIM_TS_SLAVE_12_MASTER_13 2
|
|
#define STM32_TIM_TS_SLAVE_12_MASTER_14 3
|
|
#define STM32_TIM_TS_SLAVE_19_MASTER_2 0
|
|
#define STM32_TIM_TS_SLAVE_19_MASTER_3 1
|
|
#define STM32_TIM_TS_SLAVE_19_MASTER_15 2
|
|
#define STM32_TIM_TS_SLAVE_19_MASTER_16 3
|
|
#else /* !CHIP_FAMILY_STM32F0 && !CHIP_FAMILY_STM32F3 */
|
|
/*
|
|
* Slave Master
|
|
* 1 15 2 3 4 (STM32F100 only)
|
|
* 2 9 10 3 4
|
|
* 3 9 2 11 4
|
|
* 4 10 2 3 9
|
|
* 9 2 3 10 11 (STM32L15x only)
|
|
* --------------------
|
|
* ts = 0 1 2 3
|
|
*/
|
|
#define STM32_TIM_TS_SLAVE_1_MASTER_15 0
|
|
#define STM32_TIM_TS_SLAVE_1_MASTER_2 1
|
|
#define STM32_TIM_TS_SLAVE_1_MASTER_3 2
|
|
#define STM32_TIM_TS_SLAVE_1_MASTER_4 3
|
|
#define STM32_TIM_TS_SLAVE_2_MASTER_9 0
|
|
#define STM32_TIM_TS_SLAVE_2_MASTER_10 1
|
|
#define STM32_TIM_TS_SLAVE_2_MASTER_3 2
|
|
#define STM32_TIM_TS_SLAVE_2_MASTER_4 3
|
|
#define STM32_TIM_TS_SLAVE_3_MASTER_9 0
|
|
#define STM32_TIM_TS_SLAVE_3_MASTER_2 1
|
|
#define STM32_TIM_TS_SLAVE_3_MASTER_11 2
|
|
#define STM32_TIM_TS_SLAVE_3_MASTER_4 3
|
|
#define STM32_TIM_TS_SLAVE_4_MASTER_10 0
|
|
#define STM32_TIM_TS_SLAVE_4_MASTER_2 1
|
|
#define STM32_TIM_TS_SLAVE_4_MASTER_3 2
|
|
#define STM32_TIM_TS_SLAVE_4_MASTER_9 3
|
|
#define STM32_TIM_TS_SLAVE_9_MASTER_2 0
|
|
#define STM32_TIM_TS_SLAVE_9_MASTER_3 1
|
|
#define STM32_TIM_TS_SLAVE_9_MASTER_10 2
|
|
#define STM32_TIM_TS_SLAVE_9_MASTER_11 3
|
|
#endif /* !CHIP_FAMILY_STM32F0 */
|
|
#define TSMAP(slave, master) \
|
|
CONCAT4(STM32_TIM_TS_SLAVE_, slave, _MASTER_, master)
|
|
|
|
/*
|
|
* Timers are defined per board. This gives us flexibility to work around
|
|
* timers which are dedicated to board-specific PWM sources.
|
|
*/
|
|
#define IRQ_TIM(n) CONCAT2(STM32_IRQ_TIM, n)
|
|
#define IRQ_MSB IRQ_TIM(TIM_CLOCK_MSB)
|
|
#define IRQ_LSB IRQ_TIM(TIM_CLOCK_LSB)
|
|
#define IRQ_WD IRQ_TIM(TIM_WATCHDOG)
|
|
|
|
/* TIM1 has fancy names for its IRQs; remap count-up IRQ for the macro above */
|
|
#ifdef CHIP_FAMILY_STM32F0
|
|
#define STM32_IRQ_TIM1 STM32_IRQ_TIM1_BRK_UP_TRG
|
|
#else /* !CHIP_FAMILY_STM32F0 */
|
|
#define STM32_IRQ_TIM1 STM32_IRQ_TIM1_UP_TIM16
|
|
#endif /* !CHIP_FAMILY_STM32F0 */
|
|
|
|
#define TIM_BASE(n) CONCAT3(STM32_TIM, n, _BASE)
|
|
#define TIM_WD_BASE TIM_BASE(TIM_WATCHDOG)
|
|
|
|
static uint32_t last_deadline;
|
|
|
|
void __hw_clock_event_set(uint32_t deadline)
|
|
{
|
|
last_deadline = deadline;
|
|
|
|
if ((deadline >> 16) > STM32_TIM_CNT(TIM_CLOCK_MSB)) {
|
|
/* first set a match on the MSB */
|
|
STM32_TIM_CCR1(TIM_CLOCK_MSB) = deadline >> 16;
|
|
/* disable LSB match */
|
|
STM32_TIM_DIER(TIM_CLOCK_LSB) &= ~2;
|
|
/* Clear the match flags */
|
|
STM32_TIM_SR(TIM_CLOCK_MSB) = ~2;
|
|
STM32_TIM_SR(TIM_CLOCK_LSB) = ~2;
|
|
/* Set the match interrupt */
|
|
STM32_TIM_DIER(TIM_CLOCK_MSB) |= 2;
|
|
}
|
|
/*
|
|
* In the unlikely case where the MSB has increased and matched
|
|
* the deadline MSB before we set the match interrupt, as the STM
|
|
* hardware timer won't trigger an interrupt, we fall back to the
|
|
* following LSB event code to set another interrupt.
|
|
*/
|
|
if ((deadline >> 16) == STM32_TIM_CNT(TIM_CLOCK_MSB)) {
|
|
/* we can set a match on the LSB only */
|
|
STM32_TIM_CCR1(TIM_CLOCK_LSB) = deadline & 0xffff;
|
|
/* disable MSB match */
|
|
STM32_TIM_DIER(TIM_CLOCK_MSB) &= ~2;
|
|
/* Clear the match flags */
|
|
STM32_TIM_SR(TIM_CLOCK_MSB) = ~2;
|
|
STM32_TIM_SR(TIM_CLOCK_LSB) = ~2;
|
|
/* Set the match interrupt */
|
|
STM32_TIM_DIER(TIM_CLOCK_LSB) |= 2;
|
|
}
|
|
/*
|
|
* If the LSB deadline is already in the past and won't trigger an
|
|
* interrupt, the common code in process_timers will deal with the
|
|
* expired timer and automatically set the next deadline, we don't need
|
|
* to do anything here.
|
|
*/
|
|
}
|
|
|
|
uint32_t __hw_clock_event_get(void)
|
|
{
|
|
return last_deadline;
|
|
}
|
|
|
|
void __hw_clock_event_clear(void)
|
|
{
|
|
/* Disable the match interrupts */
|
|
STM32_TIM_DIER(TIM_CLOCK_LSB) &= ~2;
|
|
STM32_TIM_DIER(TIM_CLOCK_MSB) &= ~2;
|
|
}
|
|
|
|
uint32_t __hw_clock_source_read(void)
|
|
{
|
|
uint32_t hi;
|
|
uint32_t lo;
|
|
|
|
/* Ensure the two half-words are coherent */
|
|
do {
|
|
hi = STM32_TIM_CNT(TIM_CLOCK_MSB);
|
|
lo = STM32_TIM_CNT(TIM_CLOCK_LSB);
|
|
} while (hi != STM32_TIM_CNT(TIM_CLOCK_MSB));
|
|
|
|
return (hi << 16) | lo;
|
|
}
|
|
|
|
void __hw_clock_source_set(uint32_t ts)
|
|
{
|
|
STM32_TIM_CNT(TIM_CLOCK_MSB) = ts >> 16;
|
|
STM32_TIM_CNT(TIM_CLOCK_LSB) = ts & 0xffff;
|
|
}
|
|
|
|
void __hw_clock_source_irq(void)
|
|
{
|
|
uint32_t stat_tim_msb = STM32_TIM_SR(TIM_CLOCK_MSB);
|
|
|
|
/* Clear status */
|
|
STM32_TIM_SR(TIM_CLOCK_LSB) = 0;
|
|
STM32_TIM_SR(TIM_CLOCK_MSB) = 0;
|
|
|
|
/*
|
|
* Find expired timers and set the new timer deadline
|
|
* signal overflow if the 16-bit MSB counter has overflowed.
|
|
*/
|
|
process_timers(stat_tim_msb & 0x01);
|
|
}
|
|
DECLARE_IRQ(IRQ_MSB, __hw_clock_source_irq, 1);
|
|
DECLARE_IRQ(IRQ_LSB, __hw_clock_source_irq, 1);
|
|
|
|
void __hw_timer_enable_clock(int n, int enable)
|
|
{
|
|
volatile uint32_t *reg;
|
|
uint32_t mask = 0;
|
|
|
|
/*
|
|
* Mapping of timers to reg/mask is split into a few different ranges,
|
|
* some specific to individual chips.
|
|
*/
|
|
#if defined(CHIP_FAMILY_STM32F) || defined(CHIP_FAMILY_STM32F0)
|
|
if (n == 1) {
|
|
reg = &STM32_RCC_APB2ENR;
|
|
mask = STM32_RCC_PB2_TIM1;
|
|
}
|
|
#elif defined(CHIP_FAMILY_STM32L)
|
|
if (n >= 9 && n <= 11) {
|
|
reg = &STM32_RCC_APB2ENR;
|
|
mask = STM32_RCC_PB2_TIM9 << (n - 9);
|
|
}
|
|
#endif
|
|
|
|
#if defined(CHIP_FAMILY_STM32F0)
|
|
if (n >= 15 && n <= 17) {
|
|
reg = &STM32_RCC_APB2ENR;
|
|
mask = STM32_RCC_PB2_TIM15 << (n - 15);
|
|
}
|
|
#endif
|
|
|
|
#if defined(CHIP_FAMILY_STM32F0) || defined(CHIP_FAMILY_STM32F3)
|
|
if (n == 14) {
|
|
reg = &STM32_RCC_APB1ENR;
|
|
mask = STM32_RCC_PB1_TIM14;
|
|
}
|
|
#endif
|
|
|
|
#if defined(CHIP_FAMILY_STM32F3)
|
|
if (n == 12 || n == 13) {
|
|
reg = &STM32_RCC_APB1ENR;
|
|
mask = STM32_RCC_PB1_TIM12 << (n - 12);
|
|
}
|
|
if (n == 18) {
|
|
reg = &STM32_RCC_APB1ENR;
|
|
mask = STM32_RCC_PB1_TIM18;
|
|
}
|
|
if (n == 19) {
|
|
reg = &STM32_RCC_APB2ENR;
|
|
mask = STM32_RCC_PB2_TIM19;
|
|
}
|
|
#endif
|
|
|
|
if (n >= 2 && n <= 7) {
|
|
reg = &STM32_RCC_APB1ENR;
|
|
mask = STM32_RCC_PB1_TIM2 << (n - 2);
|
|
}
|
|
|
|
if (!mask)
|
|
return;
|
|
|
|
if (enable)
|
|
*reg |= mask;
|
|
else
|
|
*reg &= ~mask;
|
|
}
|
|
|
|
static void update_prescaler(void)
|
|
{
|
|
/*
|
|
* Pre-scaler value :
|
|
* TIM_CLOCK_LSB is counting microseconds;
|
|
* TIM_CLOCK_MSB is counting every TIM_CLOCK_LSB overflow.
|
|
*
|
|
* This will take effect at the next update event (when the current
|
|
* prescaler counter ticks down, or if forced via EGR).
|
|
*/
|
|
STM32_TIM_PSC(TIM_CLOCK_MSB) = 0;
|
|
STM32_TIM_PSC(TIM_CLOCK_LSB) = (clock_get_freq() / SECOND) - 1;
|
|
}
|
|
DECLARE_HOOK(HOOK_FREQ_CHANGE, update_prescaler, HOOK_PRIO_DEFAULT);
|
|
|
|
int __hw_clock_source_init(uint32_t start_t)
|
|
{
|
|
/*
|
|
* we use 2 chained 16-bit counters to emulate a 32-bit one :
|
|
* TIM_CLOCK_MSB is the MSB (Slave)
|
|
* TIM_CLOCK_LSB is the LSB (Master)
|
|
*/
|
|
|
|
/* Enable TIM_CLOCK_MSB and TIM_CLOCK_LSB clocks */
|
|
__hw_timer_enable_clock(TIM_CLOCK_MSB, 1);
|
|
__hw_timer_enable_clock(TIM_CLOCK_LSB, 1);
|
|
|
|
/*
|
|
* Timer configuration : Upcounter, counter disabled, update event only
|
|
* on overflow.
|
|
*/
|
|
STM32_TIM_CR1(TIM_CLOCK_MSB) = 0x0004;
|
|
STM32_TIM_CR1(TIM_CLOCK_LSB) = 0x0004;
|
|
/*
|
|
* TIM_CLOCK_LSB (master mode) generates a periodic trigger signal on
|
|
* each UEV
|
|
*/
|
|
STM32_TIM_CR2(TIM_CLOCK_MSB) = 0x0000;
|
|
STM32_TIM_CR2(TIM_CLOCK_LSB) = 0x0020;
|
|
|
|
STM32_TIM_SMCR(TIM_CLOCK_MSB) = 0x0007 |
|
|
(TSMAP(TIM_CLOCK_MSB, TIM_CLOCK_LSB) << 4);
|
|
STM32_TIM_SMCR(TIM_CLOCK_LSB) = 0x0000;
|
|
|
|
/* Auto-reload value : 16-bit free-running counters */
|
|
STM32_TIM_ARR(TIM_CLOCK_MSB) = 0xffff;
|
|
STM32_TIM_ARR(TIM_CLOCK_LSB) = 0xffff;
|
|
|
|
/* Update prescaler */
|
|
update_prescaler();
|
|
|
|
/* Reload the pre-scaler */
|
|
STM32_TIM_EGR(TIM_CLOCK_MSB) = 0x0001;
|
|
STM32_TIM_EGR(TIM_CLOCK_LSB) = 0x0001;
|
|
|
|
/* Set up the overflow interrupt on TIM_CLOCK_MSB */
|
|
STM32_TIM_DIER(TIM_CLOCK_MSB) = 0x0001;
|
|
STM32_TIM_DIER(TIM_CLOCK_LSB) = 0x0000;
|
|
|
|
/* Start counting */
|
|
STM32_TIM_CR1(TIM_CLOCK_MSB) |= 1;
|
|
STM32_TIM_CR1(TIM_CLOCK_LSB) |= 1;
|
|
|
|
/* Override the count with the start value now that counting has
|
|
* started. */
|
|
__hw_clock_source_set(start_t);
|
|
|
|
/* Enable timer interrupts */
|
|
task_enable_irq(IRQ_MSB);
|
|
task_enable_irq(IRQ_LSB);
|
|
|
|
return IRQ_LSB;
|
|
}
|
|
|
|
#ifdef CONFIG_WATCHDOG_HELP
|
|
|
|
void watchdog_check(uint32_t excep_lr, uint32_t excep_sp)
|
|
{
|
|
struct timer_ctlr *timer = (struct timer_ctlr *)TIM_WD_BASE;
|
|
|
|
/* clear status */
|
|
timer->sr = 0;
|
|
|
|
watchdog_trace(excep_lr, excep_sp);
|
|
}
|
|
|
|
void IRQ_HANDLER(IRQ_WD)(void) __attribute__((naked));
|
|
void IRQ_HANDLER(IRQ_WD)(void)
|
|
{
|
|
/* Naked call so we can extract raw LR and SP */
|
|
asm volatile("mov r0, lr\n"
|
|
"mov r1, sp\n"
|
|
/* Must push registers in pairs to keep 64-bit aligned
|
|
* stack for ARM EABI. This also conveninently saves
|
|
* R0=LR so we can pass it to task_resched_if_needed. */
|
|
"push {r0, lr}\n"
|
|
"bl watchdog_check\n"
|
|
"pop {r0, lr}\n"
|
|
"b task_resched_if_needed\n");
|
|
}
|
|
const struct irq_priority IRQ_PRIORITY(IRQ_WD)
|
|
__attribute__((section(".rodata.irqprio")))
|
|
= {IRQ_WD, 0}; /* put the watchdog at the highest
|
|
priority */
|
|
|
|
void hwtimer_setup_watchdog(void)
|
|
{
|
|
struct timer_ctlr *timer = (struct timer_ctlr *)TIM_WD_BASE;
|
|
|
|
/* Enable clock */
|
|
__hw_timer_enable_clock(TIM_WATCHDOG, 1);
|
|
|
|
/*
|
|
* Timer configuration : Down counter, counter disabled, update
|
|
* event only on overflow.
|
|
*/
|
|
timer->cr1 = 0x0014 | (1 << 7);
|
|
|
|
/* TIM (slave mode) uses TIM_CLOCK_LSB as internal trigger */
|
|
timer->smcr = 0x0007 | (TSMAP(TIM_WATCHDOG, TIM_CLOCK_LSB) << 4);
|
|
|
|
/*
|
|
* The auto-reload value is based on the period between rollovers for
|
|
* TIM_CLOCK_LSB. Since TIM_CLOCK_LSB runs at 1MHz, it will overflow
|
|
* in 65.536ms. We divide our required watchdog period by this amount
|
|
* to obtain the number of times TIM_CLOCK_LSB can overflow before we
|
|
* generate an interrupt.
|
|
*/
|
|
timer->arr = timer->cnt = CONFIG_AUX_TIMER_PERIOD_MS * MSEC / (1 << 16);
|
|
|
|
/* count on every TIM_CLOCK_LSB overflow */
|
|
timer->psc = 0;
|
|
|
|
/* Reload the pre-scaler from arr when it goes below zero */
|
|
timer->egr = 0x0000;
|
|
|
|
/* setup the overflow interrupt */
|
|
timer->dier = 0x0001;
|
|
|
|
/* Start counting */
|
|
timer->cr1 |= 1;
|
|
|
|
/* Enable timer interrupts */
|
|
task_enable_irq(IRQ_WD);
|
|
}
|
|
|
|
void hwtimer_reset_watchdog(void)
|
|
{
|
|
struct timer_ctlr *timer = (struct timer_ctlr *)TIM_WD_BASE;
|
|
|
|
timer->cnt = timer->arr;
|
|
}
|
|
|
|
#endif /* defined(CONFIG_WATCHDOG) */
|