Files
OpenCellular/common/usb_pd_protocol.c
Alec Berg f52b23e964 samus_pd: when sinking power detect loss of VBUS and disconnect
Detect loss of VBUS when acting as PD sink and go to the disconnected
state. This allows us to renegotiate power when power supply drops
and switches to 5V.

BUG=none
BRANCH=none
TEST=On a samus, tested by running for a couple of hours, and verifying
that occasionally when zinger drops from 20V to 5V, we detect it and
go to the disconnected state. Note, this only happens a couple times
every hour.

Change-Id: I237d267824ff564662c9c02e525ce2613ed229e6
Signed-off-by: Alec Berg <alecaberg@chromium.org>
Reviewed-on: https://chromium-review.googlesource.com/200365
Reviewed-by: Vincent Palatin <vpalatin@chromium.org>
2014-05-21 20:35:47 +00:00

889 lines
23 KiB
C

/* Copyright (c) 2014 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "adc.h"
#include "board.h"
#include "common.h"
#include "console.h"
#include "crc.h"
#include "gpio.h"
#include "hooks.h"
#include "registers.h"
#include "task.h"
#include "timer.h"
#include "util.h"
#include "usb_pd.h"
#include "usb_pd_config.h"
#ifdef CONFIG_COMMON_RUNTIME
#define CPRINTF(format, args...) cprintf(CC_USBPD, format, ## args)
/* dump full packet on RX error */
static int debug_dump;
#else
#define CPRINTF(format, args...)
const int debug_dump;
#endif
/* Control Message type */
enum {
/* 0 Reserved */
PD_CTRL_GOOD_CRC = 1,
PD_CTRL_GOTO_MIN = 2,
PD_CTRL_ACCEPT = 3,
PD_CTRL_REJECT = 4,
PD_CTRL_PING = 5,
PD_CTRL_PS_RDY = 6,
PD_CTRL_GET_SOURCE_CAP = 7,
PD_CTRL_GET_SINK_CAP = 8,
PD_CTRL_PROTOCOL_ERR = 9,
PD_CTRL_SWAP = 10,
/* 11 Reserved */
PD_CTRL_WAIT = 12,
PD_CTRL_SOFT_RESET = 13,
/* 14-15 Reserved */
};
/* Data message type */
enum {
/* 0 Reserved */
PD_DATA_SOURCE_CAP = 1,
PD_DATA_REQUEST = 2,
PD_DATA_BIST = 3,
PD_DATA_SINK_CAP = 4,
/* 5-14 Reserved */
PD_DATA_VENDOR_DEF = 15,
};
/* Protocol revision */
#define PD_REV10 0
/* Port role */
#define PD_ROLE_SINK 0
#define PD_ROLE_SOURCE 1
/* build message header */
#define PD_HEADER(type, role, id, cnt) \
((type) | (PD_REV10 << 6) | \
((role) << 8) | ((id) << 9) | ((cnt) << 12))
#define PD_HEADER_CNT(header) (((header) >> 12) & 7)
#define PD_HEADER_TYPE(header) ((header) & 0xF)
#define PD_HEADER_ID(header) (((header) >> 9) & 7)
/* Encode 5 bits using Biphase Mark Coding */
#define BMC(x) ((x & 1 ? 0x001 : 0x3FF) \
^ (x & 2 ? 0x004 : 0x3FC) \
^ (x & 4 ? 0x010 : 0x3F0) \
^ (x & 8 ? 0x040 : 0x3C0) \
^ (x & 16 ? 0x100 : 0x300))
/* 4b/5b + Bimark Phase encoding */
static const uint16_t bmc4b5b[] = {
/* 0 = 0000 */ BMC(0x1E) /* 11110 */,
/* 1 = 0001 */ BMC(0x09) /* 01001 */,
/* 2 = 0010 */ BMC(0x14) /* 10100 */,
/* 3 = 0011 */ BMC(0x15) /* 10101 */,
/* 4 = 0100 */ BMC(0x0A) /* 01010 */,
/* 5 = 0101 */ BMC(0x0B) /* 01011 */,
/* 6 = 0110 */ BMC(0x0E) /* 01110 */,
/* 7 = 0111 */ BMC(0x0F) /* 01111 */,
/* 8 = 1000 */ BMC(0x12) /* 10010 */,
/* 9 = 1001 */ BMC(0x13) /* 10011 */,
/* A = 1010 */ BMC(0x16) /* 10110 */,
/* B = 1011 */ BMC(0x17) /* 10111 */,
/* C = 1100 */ BMC(0x1A) /* 11010 */,
/* D = 1101 */ BMC(0x1B) /* 11011 */,
/* E = 1110 */ BMC(0x1C) /* 11100 */,
/* F = 1111 */ BMC(0x1D) /* 11101 */,
/* Sync-1 K-code 11000 Startsynch #1 */
/* Sync-2 K-code 10001 Startsynch #2 */
/* RST-1 K-code 00111 Hard Reset #1 */
/* RST-2 K-code 11001 Hard Reset #2 */
/* EOP K-code 01101 EOP End Of Packet */
/* Reserved Error 00000 */
/* Reserved Error 00001 */
/* Reserved Error 00010 */
/* Reserved Error 00011 */
/* Reserved Error 00100 */
/* Reserved Error 00101 */
/* Reserved Error 00110 */
/* Reserved Error 01000 */
/* Reserved Error 01100 */
/* Reserved Error 10000 */
/* Reserved Error 11111 */
};
#define PD_SYNC1 0x18
#define PD_SYNC2 0x11
#define PD_RST1 0x07
#define PD_RST2 0x19
#define PD_EOP 0x0D
static const uint8_t dec4b5b[] = {
/* Error */ 0x10 /* 00000 */,
/* Error */ 0x10 /* 00001 */,
/* Error */ 0x10 /* 00010 */,
/* Error */ 0x10 /* 00011 */,
/* Error */ 0x10 /* 00100 */,
/* Error */ 0x10 /* 00101 */,
/* Error */ 0x10 /* 00110 */,
/* RST-1 */ 0x13 /* 00111 K-code: Hard Reset #1 */,
/* Error */ 0x10 /* 01000 */,
/* 1 = 0001 */ 0x01 /* 01001 */,
/* 4 = 0100 */ 0x04 /* 01010 */,
/* 5 = 0101 */ 0x05 /* 01011 */,
/* Error */ 0x10 /* 01100 */,
/* EOP */ 0x15 /* 01101 K-code: EOP End Of Packet */,
/* 6 = 0110 */ 0x06 /* 01110 */,
/* 7 = 0111 */ 0x07 /* 01111 */,
/* Error */ 0x10 /* 10000 */,
/* Sync-2 */ 0x12 /* 10001 K-code: Startsynch #2 */,
/* 8 = 1000 */ 0x08 /* 10010 */,
/* 9 = 1001 */ 0x09 /* 10011 */,
/* 2 = 0010 */ 0x02 /* 10100 */,
/* 3 = 0011 */ 0x03 /* 10101 */,
/* A = 1010 */ 0x0A /* 10110 */,
/* B = 1011 */ 0x0B /* 10111 */,
/* Sync-1 */ 0x11 /* 11000 K-code: Startsynch #1 */,
/* RST-2 */ 0x14 /* 11001 K-code: Hard Reset #2 */,
/* C = 1100 */ 0x0C /* 11010 */,
/* D = 1101 */ 0x0D /* 11011 */,
/* E = 1110 */ 0x0E /* 11100 */,
/* F = 1111 */ 0x0F /* 11101 */,
/* 0 = 0000 */ 0x00 /* 11110 */,
/* Error */ 0x10 /* 11111 */,
};
/* Start of Packet sequence : three Sync-1 K-codes, then one Sync-2 K-code */
#define PD_SOP (PD_SYNC1 | (PD_SYNC1<<5) | (PD_SYNC1<<10) | (PD_SYNC2<<15))
/* Hard Reset sequence : three RST-1 K-codes, then one RST-2 K-code */
#define PD_HARD_RESET (PD_RST1 | (PD_RST1 << 5) |\
(PD_RST1 << 10) | (PD_RST2 << 15))
/* PD counter definitions */
#define PD_MESSAGE_ID_COUNT 7
#define PD_RETRY_COUNT 2
#define PD_HARD_RESET_COUNT 2
#define PD_CAPS_COUNT 50
/* Timers */
#define PD_T_SEND_SOURCE_CAP (1500*MSEC) /* between 1s and 2s */
#define PD_T_GET_SOURCE_CAP (1500*MSEC) /* between 1s and 2s */
#define PD_T_SOURCE_ACTIVITY (45*MSEC) /* between 40ms and 50ms */
#define PD_T_SENDER_RESPONSE (30*MSEC) /* between 24ms and 30ms */
#define PD_T_PS_TRANSITION (220*MSEC) /* between 200ms and 220ms */
/* Port role at startup */
#ifdef CONFIG_USB_PD_DUAL_ROLE
#define PD_ROLE_DEFAULT PD_ROLE_SINK
#else
#define PD_ROLE_DEFAULT PD_ROLE_SOURCE
#endif
/* current port role */
static uint8_t pd_role = PD_ROLE_DEFAULT;
/* 3-bit rolling message ID counter */
static uint8_t pd_message_id;
/* Port polarity : 0 => CC1 is CC line, 1 => CC2 is CC line */
static uint8_t pd_polarity;
static enum {
PD_STATE_DISABLED,
#ifdef CONFIG_USB_PD_DUAL_ROLE
PD_STATE_SNK_DISCONNECTED,
PD_STATE_SNK_DISCOVERY,
PD_STATE_SNK_REQUESTED,
PD_STATE_SNK_TRANSITION,
PD_STATE_SNK_READY,
#endif /* CONFIG_USB_PD_DUAL_ROLE */
PD_STATE_SRC_DISCONNECTED,
PD_STATE_SRC_DISCOVERY,
PD_STATE_SRC_NEGOCIATE,
PD_STATE_SRC_ACCEPTED,
PD_STATE_SRC_TRANSITION,
PD_STATE_SRC_READY,
PD_STATE_HARD_RESET,
PD_STATE_BIST,
} pd_task_state = PD_DEFAULT_STATE;
/* increment message ID counter */
static void inc_id(void)
{
pd_message_id = (pd_message_id + 1) & PD_MESSAGE_ID_COUNT;
}
static inline int encode_short(void *ctxt, int off, uint16_t val16)
{
off = pd_write_sym(ctxt, off, bmc4b5b[(val16 >> 0) & 0xF]);
off = pd_write_sym(ctxt, off, bmc4b5b[(val16 >> 4) & 0xF]);
off = pd_write_sym(ctxt, off, bmc4b5b[(val16 >> 8) & 0xF]);
return pd_write_sym(ctxt, off, bmc4b5b[(val16 >> 12) & 0xF]);
}
static inline int encode_word(void *ctxt, int off, uint32_t val32)
{
off = encode_short(ctxt, off, (val32 >> 0) & 0xFFFF);
return encode_short(ctxt, off, (val32 >> 16) & 0xFFFF);
}
/* prepare a 4b/5b-encoded PD message to send */
static int prepare_message(void *ctxt, uint16_t header, uint8_t cnt,
const uint32_t *data)
{
int off, i;
crc32_init();
/* 64-bit preamble */
off = pd_write_preamble(ctxt);
/* Start Of Packet: 3x Sync-1 + 1x Sync-2 */
off = pd_write_sym(ctxt, off, BMC(PD_SYNC1));
off = pd_write_sym(ctxt, off, BMC(PD_SYNC1));
off = pd_write_sym(ctxt, off, BMC(PD_SYNC1));
off = pd_write_sym(ctxt, off, BMC(PD_SYNC2));
/* header */
off = encode_short(ctxt, off, header);
crc32_hash16(header);
/* data payload */
for (i = 0; i < cnt; i++) {
off = encode_word(ctxt, off, data[i]);
crc32_hash32(data[i]);
}
/* CRC */
off = encode_word(ctxt, off, crc32_result());
/* End Of Packet */
off = pd_write_sym(ctxt, off, BMC(PD_EOP));
/* Ensure that we have a final edge */
return pd_write_last_edge(ctxt, off);
}
static int analyze_rx(uint32_t *payload);
static void send_hard_reset(void *ctxt)
{
int off;
/* 64-bit preamble */
off = pd_write_preamble(ctxt);
/* Hard-Reset: 3x RST-1 + 1x RST-2 */
off = pd_write_sym(ctxt, off, BMC(PD_RST1));
off = pd_write_sym(ctxt, off, BMC(PD_RST1));
off = pd_write_sym(ctxt, off, BMC(PD_RST1));
off = pd_write_sym(ctxt, off, BMC(PD_RST2));
/* Ensure that we have a final edge */
off = pd_write_last_edge(ctxt, off);
/* Transmit the packet */
pd_start_tx(ctxt, pd_polarity, off);
pd_tx_done(pd_polarity);
}
static int send_validate_message(void *ctxt, uint16_t header, uint8_t cnt,
const uint32_t *data)
{
int r;
static uint32_t payload[7];
/* retry 3 times if we are not getting a valid answer */
for (r = 0; r <= PD_RETRY_COUNT; r++) {
int bit_len;
uint16_t head;
/* write the encoded packet in the transmission buffer */
bit_len = prepare_message(ctxt, header, cnt, data);
/* Transmit the packet */
pd_start_tx(ctxt, pd_polarity, bit_len);
pd_tx_done(pd_polarity);
/* starting waiting for GoodCrc */
pd_rx_start();
/* read the incoming packet if any */
head = analyze_rx(payload);
pd_rx_complete();
if (head > 0) { /* we got a good packet, analyze it */
int type = PD_HEADER_TYPE(head);
int nb = PD_HEADER_CNT(head);
uint8_t id = PD_HEADER_ID(head);
if (type == PD_CTRL_GOOD_CRC && nb == 0 &&
id == pd_message_id) {
/* got the GoodCRC we were expecting */
inc_id();
/* do not catch last edges as a new packet */
udelay(10);
return bit_len;
} else {
/* CPRINTF("ERR ACK/%d %04x\n", id, head); */
}
}
}
/* we failed all the re-transmissions */
/* TODO: try HardReset */
CPRINTF("TX NO ACK %04x/%d\n", header, cnt);
return -1;
}
static int send_control(void *ctxt, int type)
{
int bit_len;
uint16_t header = PD_HEADER(type, pd_role, pd_message_id, 0);
bit_len = send_validate_message(ctxt, header, 0, NULL);
CPRINTF("CTRL[%d]>%d\n", type, bit_len);
return bit_len;
}
static void send_goodcrc(void *ctxt, int id)
{
uint16_t header = PD_HEADER(PD_CTRL_GOOD_CRC, pd_role, id, 0);
int bit_len = prepare_message(ctxt, header, 0, NULL);
pd_start_tx(ctxt, pd_polarity, bit_len);
pd_tx_done(pd_polarity);
}
static int send_source_cap(void *ctxt)
{
int bit_len;
uint16_t header = PD_HEADER(PD_DATA_SOURCE_CAP, pd_role, pd_message_id,
pd_src_pdo_cnt);
bit_len = send_validate_message(ctxt, header, pd_src_pdo_cnt,
pd_src_pdo);
CPRINTF("srcCAP>%d\n", bit_len);
return bit_len;
}
#ifdef CONFIG_USB_PD_DUAL_ROLE
static void send_sink_cap(void *ctxt)
{
int bit_len;
uint16_t header = PD_HEADER(PD_DATA_SINK_CAP, pd_role, pd_message_id,
pd_snk_pdo_cnt);
bit_len = send_validate_message(ctxt, header, pd_snk_pdo_cnt,
pd_snk_pdo);
CPRINTF("snkCAP>%d\n", bit_len);
}
static int send_request(void *ctxt, uint32_t rdo)
{
int bit_len;
uint16_t header = PD_HEADER(PD_DATA_REQUEST, pd_role, pd_message_id, 1);
bit_len = send_validate_message(ctxt, header, 1, &rdo);
CPRINTF("REQ%d>\n", bit_len);
return bit_len;
}
#endif /* CONFIG_USB_PD_DUAL_ROLE */
static int send_bist(void *ctxt)
{
uint32_t bdo = BDO(BDO_MODE_TRANSMIT, 0);
int bit_len;
uint16_t header = PD_HEADER(PD_DATA_BIST, pd_role, pd_message_id, 1);
bit_len = send_validate_message(ctxt, header, 1, &bdo);
CPRINTF("BIST>%d\n", bit_len);
return bit_len;
}
static void handle_vdm_request(void *ctxt, int cnt, uint32_t *payload)
{
uint16_t vid = PD_VDO_VID(payload[0]);
#ifdef CONFIG_USB_PD_CUSTOM_VDM
int rlen;
uint32_t *rdata;
if (vid == USB_VID_GOOGLE) {
rlen = pd_custom_vdm(ctxt, cnt, payload, &rdata);
if (rlen > 0) {
uint16_t header = PD_HEADER(PD_DATA_VENDOR_DEF,
pd_role, pd_message_id, rlen);
send_validate_message(ctxt, header, rlen, rdata);
}
return;
}
#endif
CPRINTF("Unhandled VDM VID %04x CMD %04x\n",
vid, payload[0] & 0xFFFF);
}
static void handle_data_request(void *ctxt, uint16_t head, uint32_t *payload)
{
int type = PD_HEADER_TYPE(head);
int cnt = PD_HEADER_CNT(head);
switch (type) {
#ifdef CONFIG_USB_PD_DUAL_ROLE
case PD_DATA_SOURCE_CAP:
if ((pd_task_state == PD_STATE_SNK_DISCOVERY)
|| (pd_task_state == PD_STATE_SNK_TRANSITION)) {
uint32_t rdo;
int res;
/* we were waiting for them, let's process them */
res = pd_choose_voltage(cnt, payload, &rdo);
if (res >= 0) {
res = send_request(ctxt, rdo);
if (res >= 0)
pd_task_state = PD_STATE_SNK_REQUESTED;
else
/*
* for now: ignore failure here,
* we will retry ...
* TODO(crosbug.com/p/28332)
*/
pd_task_state = PD_STATE_SNK_REQUESTED;
}
}
break;
#endif /* CONFIG_USB_PD_DUAL_ROLE */
case PD_DATA_REQUEST:
if ((pd_role == PD_ROLE_SOURCE) && (cnt == 1))
if (!pd_request_voltage(payload[0])) {
send_control(ctxt, PD_CTRL_ACCEPT);
pd_task_state = PD_STATE_SRC_ACCEPTED;
return;
}
/* the message was incorrect or cannot be satisfied */
send_control(ctxt, PD_CTRL_REJECT);
break;
case PD_DATA_BIST:
CPRINTF("BIST not supported\n");
break;
case PD_DATA_SINK_CAP:
break;
case PD_DATA_VENDOR_DEF:
handle_vdm_request(ctxt, cnt, payload);
break;
default:
CPRINTF("Unhandled data message type %d\n", type);
}
}
static void handle_ctrl_request(void *ctxt, uint16_t head, uint32_t *payload)
{
int type = PD_HEADER_TYPE(head);
switch (type) {
case PD_CTRL_GOOD_CRC:
/* should not get it */
break;
case PD_CTRL_PING:
/* Nothing else to do */
break;
case PD_CTRL_GET_SOURCE_CAP:
send_source_cap(ctxt);
break;
#ifdef CONFIG_USB_PD_DUAL_ROLE
case PD_CTRL_GET_SINK_CAP:
send_sink_cap(ctxt);
break;
case PD_CTRL_GOTO_MIN:
break;
case PD_CTRL_PS_RDY:
if (pd_role == PD_ROLE_SINK)
pd_task_state = PD_STATE_SNK_READY;
break;
#endif /* CONFIG_USB_PD_DUAL_ROLE */
case PD_CTRL_ACCEPT:
break;
case PD_CTRL_REJECT:
break;
case PD_CTRL_PROTOCOL_ERR:
case PD_CTRL_SWAP:
case PD_CTRL_WAIT:
case PD_CTRL_SOFT_RESET:
default:
CPRINTF("Unhandled ctrl message type %d\n", type);
}
}
static void handle_request(void *ctxt, uint16_t head, uint32_t *payload)
{
int cnt = PD_HEADER_CNT(head);
int p;
if (PD_HEADER_TYPE(head) != 1 || cnt)
send_goodcrc(ctxt, PD_HEADER_ID(head));
/* dump received packet content */
CPRINTF("RECV %04x/%d ", head, cnt);
for (p = 0; p < cnt; p++)
CPRINTF("[%d]%08x ", p, payload[p]);
CPRINTF("\n");
if (cnt)
handle_data_request(ctxt, head, payload);
else
handle_ctrl_request(ctxt, head, payload);
}
static inline int decode_short(void *ctxt, int off, uint16_t *val16)
{
uint32_t w;
int end;
end = pd_dequeue_bits(ctxt, off, 20, &w);
#if 0 /* DEBUG */
CPRINTS("%d-%d: %05x %x:%x:%x:%x\n",
off, end, w,
dec4b5b[(w >> 15) & 0x1f], dec4b5b[(w >> 10) & 0x1f],
dec4b5b[(w >> 5) & 0x1f], dec4b5b[(w >> 0) & 0x1f]);
#endif
*val16 = dec4b5b[w & 0x1f] |
(dec4b5b[(w >> 5) & 0x1f] << 4) |
(dec4b5b[(w >> 10) & 0x1f] << 8) |
(dec4b5b[(w >> 15) & 0x1f] << 12);
return end;
}
static inline int decode_word(void *ctxt, int off, uint32_t *val32)
{
off = decode_short(ctxt, off, (uint16_t *)val32);
return decode_short(ctxt, off, ((uint16_t *)val32 + 1));
}
static int analyze_rx(uint32_t *payload)
{
int bit;
char *msg = "---";
uint32_t val = 0;
uint16_t header;
uint32_t pcrc, ccrc;
int p, cnt;
/* uint32_t eop; */
void *ctxt;
crc32_init();
ctxt = pd_init_dequeue();
/* Detect preamble */
bit = pd_find_preamble(ctxt);
if (bit < 0) {
msg = "Preamble";
goto packet_err;
}
/* Find the Start Of Packet sequence */
while (bit > 0) {
bit = pd_dequeue_bits(ctxt, bit, 20, &val);
if (val == PD_SOP)
break;
/* TODO: detect SOP with 1 error code */
/* TODO: detect Hard reset */
}
if (bit < 0) {
msg = "SOP";
goto packet_err;
}
/* read header */
bit = decode_short(ctxt, bit, &header);
crc32_hash16(header);
cnt = PD_HEADER_CNT(header);
/* read payload data */
for (p = 0; p < cnt && bit > 0; p++) {
bit = decode_word(ctxt, bit, payload+p);
crc32_hash32(payload[p]);
}
if (bit < 0) {
msg = "len";
goto packet_err;
}
/* check transmitted CRC */
bit = decode_word(ctxt, bit, &pcrc);
ccrc = crc32_result();
if (bit < 0 || pcrc != ccrc) {
msg = "CRC";
if (pcrc != ccrc)
bit = PD_ERR_CRC;
/* DEBUG */CPRINTF("CRC %08x <> %08x\n", pcrc, crc32_result());
goto packet_err;
}
/* check End Of Packet */
/* SKIP EOP for now
bit = pd_dequeue_bits(ctxt, bit, 5, &eop);
if (bit < 0 || eop != PD_EOP) {
msg = "EOP";
goto packet_err;
}
*/
return header;
packet_err:
if (debug_dump)
pd_dump_packet(ctxt, msg);
else
CPRINTF("RX ERR (%d)\n", bit);
return bit;
}
static void execute_hard_reset(void)
{
pd_message_id = 0;
#ifdef CONFIG_USB_PD_DUAL_ROLE
pd_task_state = pd_role == PD_ROLE_SINK ? PD_STATE_SNK_DISCONNECTED
: PD_STATE_SRC_DISCONNECTED;
#else
pd_task_state = PD_STATE_SRC_DISCONNECTED;
#endif
pd_power_supply_reset();
CPRINTF("HARD RESET!\n");
}
void pd_task(void)
{
int head;
void *ctxt = pd_hw_init();
uint32_t payload[7];
int timeout = 10*MSEC;
int cc1_volt, cc2_volt;
int res;
/* Ensure the power supply is in the default state */
pd_power_supply_reset();
while (1) {
/* monitor for incoming packet */
pd_rx_enable_monitoring();
/* Verify board specific health status : current, voltages... */
res = pd_board_checks();
if (res != EC_SUCCESS) {
/* cut the power */
execute_hard_reset();
/* notify the other side of the issue */
/* send_hard_reset(ctxt); */
}
/* wait for next event/packet or timeout expiration */
task_wait_event(timeout);
/* incoming packet ? */
if (pd_rx_started()) {
head = analyze_rx(payload);
pd_rx_complete();
if (head > 0)
handle_request(ctxt, head, payload);
else if (head == PD_ERR_HARD_RESET)
execute_hard_reset();
}
/* if nothing to do, verify the state of the world in 500ms */
timeout = 500*MSEC;
switch (pd_task_state) {
case PD_STATE_DISABLED:
/* Nothing to do */
break;
case PD_STATE_SRC_DISCONNECTED:
/* Vnc monitoring */
cc1_volt = pd_adc_read(0);
cc2_volt = pd_adc_read(1);
if ((cc1_volt < PD_SRC_VNC) ||
(cc2_volt < PD_SRC_VNC)) {
pd_polarity = !(cc1_volt < PD_SRC_VNC);
pd_select_polarity(pd_polarity);
/* Enable VBUS */
pd_set_power_supply_ready();
pd_task_state = PD_STATE_SRC_DISCOVERY;
}
timeout = 10*MSEC;
break;
case PD_STATE_SRC_DISCOVERY:
/* Query capabilites of the other side */
res = send_source_cap(ctxt);
/* packet was acked => PD capable device) */
if (res >= 0) {
pd_task_state = PD_STATE_SRC_NEGOCIATE;
} else { /* failed, retry later */
timeout = PD_T_SEND_SOURCE_CAP;
}
break;
case PD_STATE_SRC_NEGOCIATE:
/* wait for a "Request" message */
break;
case PD_STATE_SRC_ACCEPTED:
/* Accept sent, wait for the end of transition */
timeout = PD_POWER_SUPPLY_TRANSITION_DELAY;
pd_task_state = PD_STATE_SRC_TRANSITION;
break;
case PD_STATE_SRC_TRANSITION:
res = pd_set_power_supply_ready();
/* TODO error fallback */
/* the voltage output is good, notify the source */
res = send_control(ctxt, PD_CTRL_PS_RDY);
if (res >= 0) {
timeout = PD_T_SEND_SOURCE_CAP;
/* it'a time to ping regularly the sink */
pd_task_state = PD_STATE_SRC_READY;
}
/* TODO error fallback */
break;
case PD_STATE_SRC_READY:
/* Verify that the sink is alive */
res = send_control(ctxt, PD_CTRL_PING);
if (res < 0) {
/* The sink died ... */
pd_power_supply_reset();
pd_task_state = PD_STATE_SRC_DISCOVERY;
timeout = PD_T_SEND_SOURCE_CAP;
} else { /* schedule next keep-alive */
timeout = PD_T_SOURCE_ACTIVITY;
}
break;
#ifdef CONFIG_USB_PD_DUAL_ROLE
case PD_STATE_SNK_DISCONNECTED:
/* Source connection monitoring */
cc1_volt = pd_adc_read(0);
cc2_volt = pd_adc_read(1);
if ((cc1_volt > PD_SNK_VA) ||
(cc2_volt > PD_SNK_VA)) {
pd_polarity = !(cc1_volt > PD_SNK_VA);
pd_select_polarity(pd_polarity);
pd_task_state = PD_STATE_SNK_DISCOVERY;
}
timeout = 10*MSEC;
break;
case PD_STATE_SNK_DISCOVERY:
res = send_control(ctxt, PD_CTRL_GET_SOURCE_CAP);
/* packet was acked => PD capable device) */
if (res >= 0) {
/*
* we should a SOURCE_CAP package which will
* switch to the PD_STATE_SNK_REQUESTED state,
* else retry after the response timeout.
*/
timeout = PD_T_SENDER_RESPONSE;
} else { /* failed, retry later */
timeout = PD_T_GET_SOURCE_CAP;
}
break;
case PD_STATE_SNK_REQUESTED:
/* Ensure the power supply actually becomes ready */
pd_task_state = PD_STATE_SNK_TRANSITION;
timeout = PD_T_PS_TRANSITION;
break;
case PD_STATE_SNK_TRANSITION:
/*
* did not get the PS_READY,
* try again to whole request cycle.
*/
pd_task_state = PD_STATE_SNK_DISCOVERY;
timeout = 10*MSEC;
break;
case PD_STATE_SNK_READY:
/* we have power and we are happy */
/* if we have lost vbus, go back to disconnected */
if (!pd_snk_is_vbus_provided()) {
pd_task_state = PD_STATE_SNK_DISCONNECTED;
/* set timeout small to reconnect fast */
timeout = 5*MSEC;
}
/* check vital parameters from time to time */
timeout = 100*MSEC;
break;
#endif /* CONFIG_USB_PD_DUAL_ROLE */
case PD_STATE_HARD_RESET:
send_hard_reset(ctxt);
/* reset our own state machine */
execute_hard_reset();
break;
case PD_STATE_BIST:
send_bist(ctxt);
pd_task_state = PD_STATE_DISABLED;
break;
}
}
}
void pd_rx_event(void)
{
task_set_event(TASK_ID_PD, PD_EVENT_RX, 0);
}
#ifdef CONFIG_COMMON_RUNTIME
void pd_request_source_voltage(int mv)
{
pd_set_max_voltage(mv);
pd_role = PD_ROLE_SINK;
pd_set_host_mode(0);
pd_task_state = PD_STATE_SNK_DISCONNECTED;
task_wake(TASK_ID_PD);
}
static int command_pd(int argc, char **argv)
{
if (argc < 2)
return EC_ERROR_PARAM1;
if (!strcasecmp(argv[1], "tx")) {
pd_task_state = PD_STATE_SNK_DISCOVERY;
task_wake(TASK_ID_PD);
} else if (!strcasecmp(argv[1], "bist")) {
pd_task_state = PD_STATE_BIST;
task_wake(TASK_ID_PD);
} else if (!strcasecmp(argv[1], "charger")) {
pd_role = PD_ROLE_SOURCE;
pd_set_host_mode(1);
pd_task_state = PD_STATE_SRC_DISCONNECTED;
task_wake(TASK_ID_PD);
} else if (!strncasecmp(argv[1], "dev", 3)) {
int max_volt = -1;
if (argc >= 3) {
char *e;
max_volt = strtoi(argv[2], &e, 10) * 1000;
}
pd_request_source_voltage(max_volt);
} else if (!strcasecmp(argv[1], "clock")) {
int freq;
char *e;
if (argc < 3)
return EC_ERROR_PARAM2;
freq = strtoi(argv[2], &e, 10);
if (*e)
return EC_ERROR_PARAM2;
pd_set_clock(freq);
ccprintf("set TX frequency to %d Hz\n", freq);
} else if (!strcasecmp(argv[1], "dump")) {
debug_dump = !debug_dump;
} else if (!strncasecmp(argv[1], "hard", 4)) {
pd_task_state = PD_STATE_HARD_RESET;
task_wake(TASK_ID_PD);
} else if (!strncasecmp(argv[1], "ping", 4)) {
pd_role = PD_ROLE_SOURCE;
pd_set_host_mode(1);
pd_task_state = PD_STATE_SRC_READY;
task_wake(TASK_ID_PD);
} else if (!strncasecmp(argv[1], "state", 5)) {
const char * const state_names[] = {
"DISABLED",
"SNK_DISCONNECTED", "SNK_DISCOVERY", "SNK_REQUESTED",
"SNK_TRANSITION", "SNK_READY",
"SRC_DISCONNECTED", "SRC_DISCOVERY", "SRC_NEGOCIATE",
"SRC_ACCEPTED", "SRC_TRANSITION", "SRC_READY",
"HARD_RESET", "BIST",
};
ccprintf("Role: %s Polarity: CC%d State: %s\n",
pd_role == PD_ROLE_SOURCE ? "SRC" : "SNK",
pd_polarity + 1, state_names[pd_task_state]);
} else {
return EC_ERROR_PARAM1;
}
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(pd, command_pd,
"[rx|tx|hardreset|clock|connect]",
"USB PD",
NULL);
#endif /* CONFIG_COMMON_RUNTIME */