mirror of
https://github.com/Telecominfraproject/OpenCellular.git
synced 2025-11-24 10:14:55 +00:00
BUG=670 TESTS=Adds new tests which verify this doesn't occur anymore. Existing tests still pass. The existing code computes and verifies signatures on firmware/kernel data and firmware/kernel versions separately. This causes a image splicing bug where it is possible to combine together a version signature from a valid new firmware with firmware data and signature from an older version. The same problem exists with kernel verification. This CL fixes this by changing the firmware/kernel signatures to also include the version information. For the Firmware, there's a separate signature on the preamble (which contains the version) but the firmware signature now also includes this preamble in addition to the firmware data. For the Kernel, there's a separate signature on the kernel config/options (wich also contains the version), but the kernel signature now also includes these config/options in addition to the kernel data. Review URL: http://codereview.chromium.org/1430001
896 lines
35 KiB
C
896 lines
35 KiB
C
/* Copyright (c) 2010 The Chromium OS Authors. All rights reserved.
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*
|
|
* Functions for generating and manipulating a verified boot kernel image.
|
|
*/
|
|
|
|
#include "kernel_image.h"
|
|
|
|
#include <fcntl.h>
|
|
#include <stdio.h>
|
|
#include <sys/types.h>
|
|
#include <sys/stat.h>
|
|
#include <unistd.h>
|
|
|
|
#include "file_keys.h"
|
|
#include "padding.h"
|
|
#include "rollback_index.h"
|
|
#include "rsa_utility.h"
|
|
#include "sha_utility.h"
|
|
#include "signature_digest.h"
|
|
#include "utility.h"
|
|
|
|
/* Macro to determine the size of a field structure in the KernelImage
|
|
* structure. */
|
|
#define FIELD_LEN(field) (sizeof(((KernelImage*)0)->field))
|
|
|
|
KernelImage* KernelImageNew(void) {
|
|
KernelImage* image = (KernelImage*) Malloc(sizeof(KernelImage));
|
|
if (image) {
|
|
image->kernel_sign_key = NULL;
|
|
image->kernel_key_signature = NULL;
|
|
image->config_signature = NULL;
|
|
image->kernel_signature = NULL;
|
|
image->kernel_data = NULL;
|
|
}
|
|
return image;
|
|
}
|
|
|
|
void KernelImageFree(KernelImage* image) {
|
|
if (image) {
|
|
Free(image->kernel_sign_key);
|
|
Free(image->kernel_key_signature);
|
|
Free(image->config_signature);
|
|
Free(image->kernel_signature);
|
|
Free(image->kernel_data);
|
|
Free(image);
|
|
}
|
|
}
|
|
|
|
KernelImage* ReadKernelImage(const char* input_file) {
|
|
uint64_t file_size;
|
|
int image_len = 0; /* Total size of the kernel image. */
|
|
int header_len = 0;
|
|
int firmware_sign_key_len;
|
|
int kernel_key_signature_len;
|
|
int kernel_sign_key_len;
|
|
int kernel_signature_len;
|
|
uint8_t* kernel_buf;
|
|
uint8_t header_checksum[FIELD_LEN(header_checksum)];
|
|
MemcpyState st;
|
|
KernelImage* image = KernelImageNew();
|
|
|
|
if (!image)
|
|
return NULL;
|
|
|
|
kernel_buf = BufferFromFile(input_file, &file_size);
|
|
image_len = file_size;
|
|
|
|
st.remaining_len = image_len;
|
|
st.remaining_buf = kernel_buf;
|
|
|
|
/* Read and compare magic bytes. */
|
|
StatefulMemcpy(&st, &image->magic, KERNEL_MAGIC_SIZE);
|
|
|
|
if (SafeMemcmp(image->magic, KERNEL_MAGIC, KERNEL_MAGIC_SIZE)) {
|
|
fprintf(stderr, "Wrong Kernel Magic.\n");
|
|
Free(kernel_buf);
|
|
return NULL;
|
|
}
|
|
StatefulMemcpy(&st, &image->header_version, FIELD_LEN(header_version));
|
|
StatefulMemcpy(&st, &image->header_len, FIELD_LEN(header_len));
|
|
StatefulMemcpy(&st, &image->firmware_sign_algorithm,
|
|
FIELD_LEN(firmware_sign_algorithm));
|
|
StatefulMemcpy(&st, &image->kernel_sign_algorithm,
|
|
FIELD_LEN(kernel_sign_algorithm));
|
|
|
|
/* Valid Kernel Key signing algorithm. */
|
|
if (image->firmware_sign_algorithm >= kNumAlgorithms) {
|
|
Free(kernel_buf);
|
|
return NULL;
|
|
}
|
|
|
|
/* Valid Kernel Signing Algorithm? */
|
|
if (image->kernel_sign_algorithm >= kNumAlgorithms) {
|
|
Free(kernel_buf);
|
|
return NULL;
|
|
}
|
|
|
|
/* Compute size of pre-processed RSA public keys and signatures. */
|
|
firmware_sign_key_len = RSAProcessedKeySize(image->firmware_sign_algorithm);
|
|
kernel_key_signature_len = siglen_map[image->firmware_sign_algorithm];
|
|
kernel_sign_key_len = RSAProcessedKeySize(image->kernel_sign_algorithm);
|
|
kernel_signature_len = siglen_map[image->kernel_sign_algorithm];
|
|
|
|
/* Check whether key header length is correct. */
|
|
header_len = GetKernelHeaderLen(image);
|
|
if (header_len != image->header_len) {
|
|
fprintf(stderr, "Header length mismatch. Got: %d, Expected: %d\n",
|
|
image->header_len, header_len);
|
|
Free(kernel_buf);
|
|
return NULL;
|
|
}
|
|
|
|
/* Read pre-processed public half of the kernel signing key. */
|
|
StatefulMemcpy(&st, &image->kernel_key_version,
|
|
FIELD_LEN(kernel_key_version));
|
|
image->kernel_sign_key = (uint8_t*) Malloc(kernel_sign_key_len);
|
|
StatefulMemcpy(&st, image->kernel_sign_key, kernel_sign_key_len);
|
|
StatefulMemcpy(&st, image->header_checksum, FIELD_LEN(header_checksum));
|
|
|
|
/* Check whether the header checksum matches. */
|
|
CalculateKernelHeaderChecksum(image, header_checksum);
|
|
if (SafeMemcmp(header_checksum, image->header_checksum,
|
|
FIELD_LEN(header_checksum))) {
|
|
fprintf(stderr, "Invalid kernel header checksum!\n");
|
|
Free(kernel_buf);
|
|
return NULL;
|
|
}
|
|
|
|
/* Read key signature. */
|
|
image->kernel_key_signature = (uint8_t*) Malloc(kernel_key_signature_len);
|
|
StatefulMemcpy(&st, image->kernel_key_signature,
|
|
kernel_key_signature_len);
|
|
|
|
/* Read the kernel config. */
|
|
StatefulMemcpy(&st, &image->kernel_version, FIELD_LEN(kernel_version));
|
|
StatefulMemcpy(&st, &image->options.version, FIELD_LEN(options.version));
|
|
StatefulMemcpy(&st, &image->options.cmd_line, FIELD_LEN(options.cmd_line));
|
|
StatefulMemcpy(&st, &image->options.kernel_len,
|
|
FIELD_LEN(options.kernel_len));
|
|
StatefulMemcpy(&st, &image->options.kernel_load_addr,
|
|
FIELD_LEN(options.kernel_load_addr));
|
|
StatefulMemcpy(&st, &image->options.kernel_entry_addr,
|
|
FIELD_LEN(options.kernel_entry_addr));
|
|
|
|
/* Read kernel config signature. */
|
|
image->config_signature = (uint8_t*) Malloc(kernel_signature_len);
|
|
StatefulMemcpy(&st, image->config_signature, kernel_signature_len);
|
|
|
|
image->kernel_signature = (uint8_t*) Malloc(kernel_signature_len);
|
|
StatefulMemcpy(&st, image->kernel_signature, kernel_signature_len);
|
|
|
|
image->kernel_data = (uint8_t*) Malloc(image->options.kernel_len);
|
|
StatefulMemcpy(&st, image->kernel_data, image->options.kernel_len);
|
|
|
|
if(st.remaining_len != 0) { /* Overrun or underrun. */
|
|
Free(kernel_buf);
|
|
return NULL;
|
|
}
|
|
Free(kernel_buf);
|
|
return image;
|
|
}
|
|
|
|
int GetKernelHeaderLen(const KernelImage* image) {
|
|
return (FIELD_LEN(header_version) + FIELD_LEN(header_len) +
|
|
FIELD_LEN(firmware_sign_algorithm) +
|
|
FIELD_LEN(kernel_sign_algorithm) + FIELD_LEN(kernel_key_version) +
|
|
RSAProcessedKeySize(image->kernel_sign_algorithm) +
|
|
FIELD_LEN(header_checksum));
|
|
}
|
|
|
|
void CalculateKernelHeaderChecksum(const KernelImage* image,
|
|
uint8_t* header_checksum) {
|
|
uint8_t* checksum;
|
|
DigestContext ctx;
|
|
DigestInit(&ctx, SHA512_DIGEST_ALGORITHM);
|
|
DigestUpdate(&ctx, (uint8_t*) &image->header_version,
|
|
sizeof(image->header_version));
|
|
DigestUpdate(&ctx, (uint8_t*) &image->header_len,
|
|
sizeof(image->header_len));
|
|
DigestUpdate(&ctx, (uint8_t*) &image->firmware_sign_algorithm,
|
|
sizeof(image->firmware_sign_algorithm));
|
|
DigestUpdate(&ctx, (uint8_t*) &image->kernel_sign_algorithm,
|
|
sizeof(image->kernel_sign_algorithm));
|
|
DigestUpdate(&ctx, (uint8_t*) &image->kernel_key_version,
|
|
sizeof(image->kernel_key_version));
|
|
DigestUpdate(&ctx, image->kernel_sign_key,
|
|
RSAProcessedKeySize(image->kernel_sign_algorithm));
|
|
checksum = DigestFinal(&ctx);
|
|
Memcpy(header_checksum, checksum, FIELD_LEN(header_checksum));
|
|
Free(checksum);
|
|
return;
|
|
}
|
|
|
|
uint8_t* GetKernelHeaderBlob(const KernelImage* image) {
|
|
uint8_t* header_blob = NULL;
|
|
MemcpyState st;
|
|
|
|
header_blob = (uint8_t*) Malloc(GetKernelHeaderLen(image));
|
|
st.remaining_len = GetKernelHeaderLen(image);
|
|
st.remaining_buf = header_blob;
|
|
|
|
StatefulMemcpy_r(&st, &image->header_version, FIELD_LEN(header_version));
|
|
StatefulMemcpy_r(&st, &image->header_len, FIELD_LEN(header_len));
|
|
StatefulMemcpy_r(&st, &image->firmware_sign_algorithm,
|
|
FIELD_LEN(firmware_sign_algorithm));
|
|
StatefulMemcpy_r(&st, &image->kernel_sign_algorithm,
|
|
FIELD_LEN(kernel_sign_algorithm));
|
|
StatefulMemcpy_r(&st, &image->kernel_key_version,
|
|
FIELD_LEN(kernel_key_version));
|
|
StatefulMemcpy_r(&st, image->kernel_sign_key,
|
|
RSAProcessedKeySize(image->kernel_sign_algorithm));
|
|
StatefulMemcpy_r(&st, &image->header_checksum, FIELD_LEN(header_checksum));
|
|
|
|
if (st.remaining_len != 0) { /* Underrun or Overrun. */
|
|
Free(header_blob);
|
|
return NULL;
|
|
}
|
|
return header_blob;
|
|
}
|
|
|
|
int GetKernelConfigLen() {
|
|
return (FIELD_LEN(kernel_version) +
|
|
FIELD_LEN(options.version) + FIELD_LEN(options.cmd_line) +
|
|
FIELD_LEN(options.kernel_len) + FIELD_LEN(options.kernel_load_addr) +
|
|
FIELD_LEN(options.kernel_entry_addr));
|
|
}
|
|
|
|
uint8_t* GetKernelConfigBlob(const KernelImage* image) {
|
|
uint8_t* config_blob = NULL;
|
|
MemcpyState st;
|
|
|
|
config_blob = (uint8_t*) Malloc(GetKernelConfigLen());
|
|
st.remaining_len = GetKernelConfigLen();
|
|
st.remaining_buf = config_blob;
|
|
|
|
StatefulMemcpy_r(&st, &image->kernel_version, FIELD_LEN(kernel_version));
|
|
StatefulMemcpy_r(&st, image->options.version, FIELD_LEN(options.version));
|
|
StatefulMemcpy_r(&st, image->options.cmd_line, FIELD_LEN(options.cmd_line));
|
|
StatefulMemcpy_r(&st, &image->options.kernel_len,
|
|
FIELD_LEN(options.kernel_len));
|
|
StatefulMemcpy_r(&st, &image->options.kernel_load_addr,
|
|
FIELD_LEN(options.kernel_load_addr));
|
|
StatefulMemcpy_r(&st, &image->options.kernel_entry_addr,
|
|
FIELD_LEN(options.kernel_entry_addr));
|
|
if (st.remaining_len != 0) { /* Overrun or Underrun. */
|
|
Free(config_blob);
|
|
return NULL;
|
|
}
|
|
return config_blob;
|
|
}
|
|
|
|
uint8_t* GetKernelBlob(const KernelImage* image, uint64_t* blob_len) {
|
|
int kernel_key_signature_len;
|
|
int kernel_signature_len;
|
|
uint8_t* kernel_blob = NULL;
|
|
uint8_t* header_blob = NULL;
|
|
uint8_t* config_blob = NULL;
|
|
MemcpyState st;
|
|
|
|
if (!image)
|
|
return NULL;
|
|
kernel_key_signature_len = siglen_map[image->firmware_sign_algorithm];
|
|
kernel_signature_len = siglen_map[image->kernel_sign_algorithm];
|
|
*blob_len = (FIELD_LEN(magic) +
|
|
GetKernelHeaderLen(image) +
|
|
kernel_key_signature_len +
|
|
GetKernelConfigLen() +
|
|
2 * kernel_signature_len +
|
|
image->options.kernel_len);
|
|
kernel_blob = (uint8_t*) Malloc(*blob_len);
|
|
st.remaining_len = *blob_len;
|
|
st.remaining_buf = kernel_blob;
|
|
|
|
header_blob = GetKernelHeaderBlob(image);
|
|
config_blob = GetKernelConfigBlob(image);
|
|
|
|
StatefulMemcpy_r(&st, image->magic, FIELD_LEN(magic));
|
|
StatefulMemcpy_r(&st, header_blob, GetKernelHeaderLen(image));
|
|
StatefulMemcpy_r(&st, image->kernel_key_signature, kernel_key_signature_len);
|
|
StatefulMemcpy_r(&st, config_blob, GetKernelConfigLen());
|
|
StatefulMemcpy_r(&st, image->config_signature, kernel_signature_len);
|
|
StatefulMemcpy_r(&st, image->kernel_signature, kernel_signature_len);
|
|
StatefulMemcpy_r(&st, image->kernel_data, image->options.kernel_len);
|
|
|
|
Free(config_blob);
|
|
Free(header_blob);
|
|
|
|
if (st.remaining_len != 0) { /* Underrun or Overrun. */
|
|
Free(kernel_blob);
|
|
return NULL;
|
|
}
|
|
return kernel_blob;
|
|
}
|
|
|
|
int WriteKernelImage(const char* input_file,
|
|
const KernelImage* image) {
|
|
int fd;
|
|
uint8_t* kernel_blob;
|
|
uint64_t blob_len;
|
|
|
|
if (!image)
|
|
return 0;
|
|
if (-1 == (fd = creat(input_file, S_IRWXU))) {
|
|
fprintf(stderr, "Couldn't open file for writing kernel image: %s\n",
|
|
input_file);
|
|
return 0;
|
|
}
|
|
kernel_blob = GetKernelBlob(image, &blob_len);
|
|
if (!kernel_blob) {
|
|
fprintf(stderr, "Couldn't create kernel blob from KernelImage.\n");
|
|
return 0;
|
|
}
|
|
if (blob_len != write(fd, kernel_blob, blob_len)) {
|
|
fprintf(stderr, "Couldn't write Kernel Image to file: %s\n",
|
|
input_file);
|
|
|
|
Free(kernel_blob);
|
|
close(fd);
|
|
return 0;
|
|
}
|
|
Free(kernel_blob);
|
|
close(fd);
|
|
return 1;
|
|
}
|
|
|
|
void PrintKernelImage(const KernelImage* image) {
|
|
if (!image)
|
|
return;
|
|
|
|
/* Print header. */
|
|
printf("Header Version = %d\n"
|
|
"Header Length = %d\n"
|
|
"Kernel Key Signature Algorithm = %s\n"
|
|
"Kernel Signature Algorithm = %s\n"
|
|
"Kernel Key Version = %d\n\n",
|
|
image->header_version,
|
|
image->header_len,
|
|
algo_strings[image->firmware_sign_algorithm],
|
|
algo_strings[image->kernel_sign_algorithm],
|
|
image->kernel_key_version);
|
|
/* TODO(gauravsh): Output hash and key signature here? */
|
|
/* Print preamble. */
|
|
printf("Kernel Version = %d\n"
|
|
"Kernel Config Version = %d.%d\n"
|
|
"Kernel Config command line = \"%s\"\n"
|
|
"kernel Length = %" PRId64 "\n"
|
|
"Kernel Load Address = %" PRId64 "\n"
|
|
"Kernel Entry Address = %" PRId64 "\n\n",
|
|
image->kernel_version,
|
|
image->options.version[0], image->options.version[1],
|
|
image->options.cmd_line,
|
|
image->options.kernel_len,
|
|
image->options.kernel_load_addr,
|
|
image->options.kernel_entry_addr);
|
|
/* TODO(gauravsh): Output kernel signature here? */
|
|
}
|
|
|
|
char* kVerifyKernelErrors[VERIFY_KERNEL_MAX] = {
|
|
"Success.",
|
|
"Invalid Image.",
|
|
"Kernel Key Signature Failed.",
|
|
"Invalid Kernel Verification Algorithm.",
|
|
"Config Signature Failed.",
|
|
"Kernel Signature Failed.",
|
|
"Wrong Kernel Magic.",
|
|
};
|
|
|
|
int VerifyKernelHeader(const uint8_t* firmware_key_blob,
|
|
const uint8_t* header_blob,
|
|
const int dev_mode,
|
|
int* firmware_algorithm,
|
|
int* kernel_algorithm,
|
|
int* kernel_header_len) {
|
|
int kernel_sign_key_len;
|
|
int firmware_sign_key_len;
|
|
uint16_t header_version, header_len;
|
|
uint16_t firmware_sign_algorithm, kernel_sign_algorithm;
|
|
uint8_t* header_checksum = NULL;
|
|
|
|
/* Base Offset for the header_checksum field. Actual offset is
|
|
* this + kernel_sign_key_len. */
|
|
int base_header_checksum_offset = (FIELD_LEN(header_version) +
|
|
FIELD_LEN(header_len) +
|
|
FIELD_LEN(firmware_sign_algorithm) +
|
|
FIELD_LEN(kernel_sign_algorithm) +
|
|
FIELD_LEN(kernel_key_version));
|
|
|
|
Memcpy(&header_version, header_blob, sizeof(header_version));
|
|
Memcpy(&header_len, header_blob + FIELD_LEN(header_version),
|
|
sizeof(header_len));
|
|
Memcpy(&firmware_sign_algorithm,
|
|
header_blob + (FIELD_LEN(header_version) +
|
|
FIELD_LEN(header_len)),
|
|
sizeof(firmware_sign_algorithm));
|
|
Memcpy(&kernel_sign_algorithm,
|
|
header_blob + (FIELD_LEN(header_version) +
|
|
FIELD_LEN(header_len) +
|
|
FIELD_LEN(firmware_sign_algorithm)),
|
|
sizeof(kernel_sign_algorithm));
|
|
|
|
/* TODO(gauravsh): Make this return two different error types depending
|
|
* on whether the firmware or kernel signing algorithm is invalid. */
|
|
if (firmware_sign_algorithm >= kNumAlgorithms)
|
|
return VERIFY_KERNEL_INVALID_ALGORITHM;
|
|
if (kernel_sign_algorithm >= kNumAlgorithms)
|
|
return VERIFY_KERNEL_INVALID_ALGORITHM;
|
|
|
|
*firmware_algorithm = (int) firmware_sign_algorithm;
|
|
*kernel_algorithm = (int) kernel_sign_algorithm;
|
|
kernel_sign_key_len = RSAProcessedKeySize(kernel_sign_algorithm);
|
|
firmware_sign_key_len = RSAProcessedKeySize(firmware_sign_algorithm);
|
|
|
|
|
|
/* Verify if header len is correct? */
|
|
if (header_len != (base_header_checksum_offset +
|
|
kernel_sign_key_len +
|
|
FIELD_LEN(header_checksum))) {
|
|
fprintf(stderr, "VerifyKernelHeader: Header length mismatch\n");
|
|
return VERIFY_KERNEL_INVALID_IMAGE;
|
|
}
|
|
*kernel_header_len = (int) header_len;
|
|
|
|
/* Verify if the hash of the header is correct. */
|
|
header_checksum = DigestBuf(header_blob,
|
|
header_len - FIELD_LEN(header_checksum),
|
|
SHA512_DIGEST_ALGORITHM);
|
|
if (SafeMemcmp(header_checksum,
|
|
header_blob + (base_header_checksum_offset +
|
|
kernel_sign_key_len),
|
|
FIELD_LEN(header_checksum))) {
|
|
Free(header_checksum);
|
|
fprintf(stderr, "VerifyKernelHeader: Invalid header hash\n");
|
|
return VERIFY_KERNEL_INVALID_IMAGE;
|
|
}
|
|
Free(header_checksum);
|
|
|
|
/* Verify kernel key signature unless we are in dev mode. */
|
|
if (!dev_mode) {
|
|
if (!RSAVerifyBinary_f(firmware_key_blob, NULL, /* Key to use */
|
|
header_blob, /* Data to verify */
|
|
header_len, /* Length of data */
|
|
header_blob + header_len, /* Expected Signature */
|
|
firmware_sign_algorithm))
|
|
return VERIFY_KERNEL_KEY_SIGNATURE_FAILED;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int VerifyKernelConfig(RSAPublicKey* kernel_sign_key,
|
|
const uint8_t* config_blob,
|
|
int algorithm,
|
|
int* kernel_len) {
|
|
uint32_t len, config_len;
|
|
config_len = GetKernelConfigLen();
|
|
if (!RSAVerifyBinary_f(NULL, kernel_sign_key, /* Key to use */
|
|
config_blob, /* Data to verify */
|
|
config_len, /* Length of data */
|
|
config_blob + config_len, /* Expected Signature */
|
|
algorithm))
|
|
return VERIFY_KERNEL_CONFIG_SIGNATURE_FAILED;
|
|
|
|
Memcpy(&len,
|
|
config_blob + (FIELD_LEN(kernel_version) + FIELD_LEN(options.version) +
|
|
FIELD_LEN(options.cmd_line)),
|
|
sizeof(len));
|
|
*kernel_len = (int) len;
|
|
return 0;
|
|
}
|
|
|
|
int VerifyKernelData(RSAPublicKey* kernel_sign_key,
|
|
const uint8_t* kernel_config_start,
|
|
const uint8_t* kernel_data_start,
|
|
int kernel_len,
|
|
int algorithm) {
|
|
int signature_len = siglen_map[algorithm];
|
|
uint8_t* digest;
|
|
DigestContext ctx;
|
|
|
|
/* Since the kernel signature is computed over the kernel version, options
|
|
* and data, which does not form a contiguous region of memory, we calculate
|
|
* the message digest ourselves. */
|
|
DigestInit(&ctx, algorithm);
|
|
DigestUpdate(&ctx, kernel_config_start, GetKernelConfigLen());
|
|
DigestUpdate(&ctx, kernel_data_start + signature_len, kernel_len);
|
|
digest = DigestFinal(&ctx);
|
|
if (!RSAVerifyBinaryWithDigest_f(
|
|
NULL, kernel_sign_key, /* Key to use. */
|
|
digest, /* Digest of the data to verify. */
|
|
kernel_data_start, /* Expected Signature */
|
|
algorithm)) {
|
|
Free(digest);
|
|
return VERIFY_KERNEL_SIGNATURE_FAILED;
|
|
}
|
|
Free(digest);
|
|
return 0;
|
|
}
|
|
|
|
int VerifyKernel(const uint8_t* firmware_key_blob,
|
|
const uint8_t* kernel_blob,
|
|
const int dev_mode) {
|
|
int error_code;
|
|
int firmware_sign_algorithm; /* Firmware signing key algorithm. */
|
|
int kernel_sign_algorithm; /* Kernel Signing key algorithm. */
|
|
RSAPublicKey* kernel_sign_key;
|
|
int kernel_sign_key_len, kernel_key_signature_len, kernel_signature_len,
|
|
header_len, kernel_len;
|
|
const uint8_t* header_ptr; /* Pointer to header. */
|
|
const uint8_t* kernel_sign_key_ptr; /* Pointer to signing key. */
|
|
const uint8_t* config_ptr; /* Pointer to kernel config block. */
|
|
const uint8_t* kernel_ptr; /* Pointer to kernel signature/data. */
|
|
|
|
/* Note: All the offset calculations are based on struct FirmwareImage which
|
|
* is defined in include/firmware_image.h. */
|
|
|
|
/* Compare magic bytes. */
|
|
if (SafeMemcmp(kernel_blob, KERNEL_MAGIC, KERNEL_MAGIC_SIZE))
|
|
return VERIFY_KERNEL_WRONG_MAGIC;
|
|
header_ptr = kernel_blob + KERNEL_MAGIC_SIZE;
|
|
|
|
/* Only continue if header verification succeeds. */
|
|
if ((error_code = VerifyKernelHeader(firmware_key_blob, header_ptr, dev_mode,
|
|
&firmware_sign_algorithm,
|
|
&kernel_sign_algorithm, &header_len))) {
|
|
fprintf(stderr, "VerifyKernel: Kernel header verification failed.\n");
|
|
return error_code; /* AKA jump to recovery. */
|
|
}
|
|
/* Parse signing key into RSAPublicKey structure since it is required multiple
|
|
* times. */
|
|
kernel_sign_key_len = RSAProcessedKeySize(kernel_sign_algorithm);
|
|
kernel_sign_key_ptr = header_ptr + (FIELD_LEN(header_version) +
|
|
FIELD_LEN(header_len) +
|
|
FIELD_LEN(firmware_sign_algorithm) +
|
|
FIELD_LEN(kernel_sign_algorithm) +
|
|
FIELD_LEN(kernel_key_version));
|
|
kernel_sign_key = RSAPublicKeyFromBuf(kernel_sign_key_ptr,
|
|
kernel_sign_key_len);
|
|
kernel_signature_len = siglen_map[kernel_sign_algorithm];
|
|
kernel_key_signature_len = siglen_map[firmware_sign_algorithm];
|
|
|
|
/* Only continue if config verification succeeds. */
|
|
config_ptr = (header_ptr + header_len + kernel_key_signature_len);
|
|
if ((error_code = VerifyKernelConfig(kernel_sign_key, config_ptr,
|
|
kernel_sign_algorithm,
|
|
&kernel_len))) {
|
|
RSAPublicKeyFree(kernel_sign_key);
|
|
return error_code; /* AKA jump to recovery. */
|
|
}
|
|
/* Only continue if kernel data verification succeeds. */
|
|
kernel_ptr = (config_ptr +
|
|
GetKernelConfigLen() + /* Skip config block/signature. */
|
|
kernel_signature_len);
|
|
|
|
if ((error_code = VerifyKernelData(kernel_sign_key, config_ptr, kernel_ptr,
|
|
kernel_len,
|
|
kernel_sign_algorithm))) {
|
|
RSAPublicKeyFree(kernel_sign_key);
|
|
return error_code; /* AKA jump to recovery. */
|
|
}
|
|
RSAPublicKeyFree(kernel_sign_key);
|
|
return 0; /* Success! */
|
|
}
|
|
|
|
int VerifyKernelImage(const RSAPublicKey* firmware_key,
|
|
const KernelImage* image,
|
|
const int dev_mode) {
|
|
RSAPublicKey* kernel_sign_key = NULL;
|
|
uint8_t* header_digest = NULL;
|
|
uint8_t* config_digest = NULL;
|
|
uint8_t* kernel_digest = NULL;
|
|
int kernel_sign_key_size;
|
|
int kernel_signature_size;
|
|
int error_code = 0;
|
|
DigestContext ctx;
|
|
DigestContext kernel_ctx;
|
|
if (!image)
|
|
return VERIFY_KERNEL_INVALID_IMAGE;
|
|
|
|
/* Verify kernel key signature on the key header if we
|
|
* are not in dev mode.
|
|
*
|
|
* TODO(gauravsh): Add additional sanity checks here for:
|
|
* 1) verifying the header length is correct.
|
|
* 2) header_checksum is correct.
|
|
*/
|
|
|
|
if (image->firmware_sign_algorithm >= kNumAlgorithms)
|
|
return VERIFY_KERNEL_INVALID_ALGORITHM;
|
|
if (image->kernel_sign_algorithm >= kNumAlgorithms)
|
|
return VERIFY_KERNEL_INVALID_ALGORITHM;
|
|
|
|
if (!dev_mode) {
|
|
DigestInit(&ctx, image->firmware_sign_algorithm);
|
|
DigestUpdate(&ctx, (uint8_t*) &image->header_version,
|
|
FIELD_LEN(header_version));
|
|
DigestUpdate(&ctx, (uint8_t*) &image->header_len,
|
|
FIELD_LEN(header_len));
|
|
DigestUpdate(&ctx, (uint8_t*) &image->firmware_sign_algorithm,
|
|
FIELD_LEN(firmware_sign_algorithm));
|
|
DigestUpdate(&ctx, (uint8_t*) &image->kernel_sign_algorithm,
|
|
FIELD_LEN(kernel_sign_algorithm));
|
|
DigestUpdate(&ctx, (uint8_t*) &image->kernel_key_version,
|
|
FIELD_LEN(kernel_key_version));
|
|
DigestUpdate(&ctx, image->kernel_sign_key,
|
|
RSAProcessedKeySize(image->kernel_sign_algorithm));
|
|
DigestUpdate(&ctx, image->header_checksum,
|
|
FIELD_LEN(header_checksum));
|
|
header_digest = DigestFinal(&ctx);
|
|
if (!RSAVerify(firmware_key, image->kernel_key_signature,
|
|
siglen_map[image->firmware_sign_algorithm],
|
|
image->firmware_sign_algorithm,
|
|
header_digest)) {
|
|
fprintf(stderr, "VerifyKernelImage(): Key signature check failed.\n");
|
|
error_code = VERIFY_KERNEL_KEY_SIGNATURE_FAILED;
|
|
goto verify_failure;
|
|
}
|
|
}
|
|
|
|
/* Get kernel signing key to verify the rest of the kernel. */
|
|
kernel_sign_key_size = RSAProcessedKeySize(image->kernel_sign_algorithm);
|
|
kernel_sign_key = RSAPublicKeyFromBuf(image->kernel_sign_key,
|
|
kernel_sign_key_size);
|
|
kernel_signature_size = siglen_map[image->kernel_sign_algorithm];
|
|
|
|
/* Verify kernel config signature. */
|
|
DigestInit(&ctx, image->kernel_sign_algorithm);
|
|
DigestUpdate(&ctx, (uint8_t*) &image->kernel_version,
|
|
FIELD_LEN(kernel_version));
|
|
DigestUpdate(&ctx, (uint8_t*) image->options.version,
|
|
FIELD_LEN(options.version));
|
|
DigestUpdate(&ctx, (uint8_t*) image->options.cmd_line,
|
|
FIELD_LEN(options.cmd_line));
|
|
DigestUpdate(&ctx, (uint8_t*) &image->options.kernel_len,
|
|
FIELD_LEN(options.kernel_len));
|
|
DigestUpdate(&ctx, (uint8_t*) &image->options.kernel_load_addr,
|
|
FIELD_LEN(options.kernel_load_addr));
|
|
DigestUpdate(&ctx, (uint8_t*) &image->options.kernel_entry_addr,
|
|
FIELD_LEN(options.kernel_entry_addr));
|
|
config_digest = DigestFinal(&ctx);
|
|
if (!RSAVerify(kernel_sign_key, image->config_signature,
|
|
kernel_signature_size, image->kernel_sign_algorithm,
|
|
config_digest)) {
|
|
error_code = VERIFY_KERNEL_CONFIG_SIGNATURE_FAILED;
|
|
goto verify_failure;
|
|
}
|
|
|
|
/* Verify kernel signature - kernel signature is computed on the contents
|
|
of kernel version + kernel options + kernel_data. */
|
|
DigestInit(&kernel_ctx, image->kernel_sign_algorithm);
|
|
DigestUpdate(&kernel_ctx, (uint8_t*) &image->kernel_version,
|
|
FIELD_LEN(kernel_version));
|
|
DigestUpdate(&kernel_ctx, (uint8_t*) image->options.version,
|
|
FIELD_LEN(options.version));
|
|
DigestUpdate(&kernel_ctx, (uint8_t*) image->options.cmd_line,
|
|
FIELD_LEN(options.cmd_line));
|
|
DigestUpdate(&kernel_ctx, (uint8_t*) &image->options.kernel_len,
|
|
FIELD_LEN(options.kernel_len));
|
|
DigestUpdate(&kernel_ctx, (uint8_t*) &image->options.kernel_load_addr,
|
|
FIELD_LEN(options.kernel_load_addr));
|
|
DigestUpdate(&kernel_ctx, (uint8_t*) &image->options.kernel_entry_addr,
|
|
FIELD_LEN(options.kernel_entry_addr));
|
|
DigestUpdate(&kernel_ctx, image->kernel_data, image->options.kernel_len);
|
|
kernel_digest = DigestFinal(&kernel_ctx);
|
|
if (!RSAVerify(kernel_sign_key, image->kernel_signature,
|
|
kernel_signature_size, image->kernel_sign_algorithm,
|
|
kernel_digest)) {
|
|
error_code = VERIFY_KERNEL_SIGNATURE_FAILED;
|
|
goto verify_failure;
|
|
}
|
|
|
|
verify_failure:
|
|
RSAPublicKeyFree(kernel_sign_key);
|
|
Free(kernel_digest);
|
|
Free(config_digest);
|
|
Free(header_digest);
|
|
return error_code;
|
|
}
|
|
|
|
const char* VerifyKernelErrorString(int error) {
|
|
return kVerifyKernelErrors[error];
|
|
}
|
|
|
|
int AddKernelKeySignature(KernelImage* image, const char* firmware_key_file) {
|
|
uint8_t* header_blob = NULL;
|
|
uint8_t* signature = NULL;
|
|
int signature_len = siglen_map[image->firmware_sign_algorithm];
|
|
if (!image || !firmware_key_file)
|
|
return 0;
|
|
header_blob = GetKernelHeaderBlob(image);
|
|
if (!header_blob)
|
|
return 0;
|
|
if (!(signature = SignatureBuf(header_blob,
|
|
GetKernelHeaderLen(image),
|
|
firmware_key_file,
|
|
image->firmware_sign_algorithm))) {
|
|
Free(header_blob);
|
|
return 0;
|
|
}
|
|
image->kernel_key_signature = Malloc(signature_len);
|
|
Memcpy(image->kernel_key_signature, signature, signature_len);
|
|
Free(signature);
|
|
Free(header_blob);
|
|
return 1;
|
|
}
|
|
|
|
int AddKernelSignature(KernelImage* image,
|
|
const char* kernel_signing_key_file) {
|
|
uint8_t* config_blob = NULL;
|
|
uint8_t* config_signature = NULL;
|
|
uint8_t* kernel_signature = NULL;
|
|
uint8_t* kernel_buf;
|
|
int signature_len = siglen_map[image->kernel_sign_algorithm];
|
|
|
|
config_blob = GetKernelConfigBlob(image);
|
|
if (!(config_signature = SignatureBuf(config_blob,
|
|
GetKernelConfigLen(),
|
|
kernel_signing_key_file,
|
|
image->kernel_sign_algorithm))) {
|
|
fprintf(stderr, "Could not compute signature on the kernel config.\n");
|
|
Free(config_blob);
|
|
return 0;
|
|
}
|
|
|
|
image->config_signature = (uint8_t*) Malloc(signature_len);
|
|
Memcpy(image->config_signature, config_signature, signature_len);
|
|
Free(config_signature);
|
|
/* Kernel signature muse be calculated on the kernel version, options and
|
|
* kernel data to avoid splicing attacks. */
|
|
kernel_buf = (uint8_t*) Malloc(GetKernelConfigLen() +
|
|
image->options.kernel_len);
|
|
Memcpy(kernel_buf, config_blob, GetKernelConfigLen());
|
|
Memcpy(kernel_buf + GetKernelConfigLen(), image->kernel_data,
|
|
image->options.kernel_len);
|
|
if (!(kernel_signature = SignatureBuf(kernel_buf,
|
|
GetKernelConfigLen() +
|
|
image->options.kernel_len,
|
|
kernel_signing_key_file,
|
|
image->kernel_sign_algorithm))) {
|
|
Free(config_blob);
|
|
Free(kernel_buf);
|
|
fprintf(stderr, "Could not compute signature on the kernel.\n");
|
|
return 0;
|
|
}
|
|
image->kernel_signature = (uint8_t*) Malloc(signature_len);
|
|
Memcpy(image->kernel_signature, kernel_signature, signature_len);
|
|
Free(kernel_signature);
|
|
Free(kernel_buf);
|
|
Free(config_blob);
|
|
return 1;
|
|
}
|
|
|
|
uint32_t GetLogicalKernelVersion(uint8_t* kernel_blob) {
|
|
uint8_t* kernel_ptr;
|
|
uint16_t kernel_key_version;
|
|
uint16_t kernel_version;
|
|
uint16_t firmware_sign_algorithm;
|
|
uint16_t kernel_sign_algorithm;
|
|
int kernel_key_signature_len;
|
|
int kernel_sign_key_len;
|
|
kernel_ptr = kernel_blob + (FIELD_LEN(magic) +
|
|
FIELD_LEN(header_version) +
|
|
FIELD_LEN(header_len));
|
|
Memcpy(&firmware_sign_algorithm, kernel_ptr, sizeof(firmware_sign_algorithm));
|
|
kernel_ptr += FIELD_LEN(firmware_sign_algorithm);
|
|
Memcpy(&kernel_sign_algorithm, kernel_ptr, sizeof(kernel_sign_algorithm));
|
|
kernel_ptr += FIELD_LEN(kernel_sign_algorithm);
|
|
Memcpy(&kernel_key_version, kernel_ptr, sizeof(kernel_key_version));
|
|
|
|
if (firmware_sign_algorithm >= kNumAlgorithms)
|
|
return 0;
|
|
if (kernel_sign_algorithm >= kNumAlgorithms)
|
|
return 0;
|
|
kernel_key_signature_len = siglen_map[firmware_sign_algorithm];
|
|
kernel_sign_key_len = RSAProcessedKeySize(kernel_sign_algorithm);
|
|
kernel_ptr += (FIELD_LEN(kernel_key_version) +
|
|
kernel_sign_key_len +
|
|
FIELD_LEN(header_checksum) +
|
|
kernel_key_signature_len);
|
|
Memcpy(&kernel_version, kernel_ptr, sizeof(kernel_version));
|
|
return CombineUint16Pair(kernel_key_version, kernel_version);
|
|
}
|
|
|
|
void PrintKernelEntry(kernel_entry* entry) {
|
|
fprintf(stderr, "Boot Priority = %d\n", entry->boot_priority);
|
|
fprintf(stderr, "Boot Tries Remaining = %d\n", entry->boot_tries_remaining);
|
|
fprintf(stderr, "Boot Success Flag = %d\n", entry->boot_success_flag);
|
|
}
|
|
|
|
int VerifyKernelDriver_f(uint8_t* firmware_key_blob,
|
|
kernel_entry* kernelA,
|
|
kernel_entry* kernelB,
|
|
int dev_mode) {
|
|
int i;
|
|
/* Contains the logical kernel version (32-bit) which is calculated as
|
|
* (kernel_key_version << 16 | kernel_version) where
|
|
* [kernel_key_version], [firmware_version] are both 16-bit.
|
|
*/
|
|
uint32_t kernelA_lversion, kernelB_lversion;
|
|
uint32_t min_lversion; /* Minimum of kernel A and kernel B lversion. */
|
|
uint32_t stored_lversion; /* Stored logical version in the TPM. */
|
|
kernel_entry* try_kernel[2]; /* Kernel in try order. */
|
|
int try_kernel_which[2]; /* Which corresponding kernel in the try order */
|
|
uint32_t try_kernel_lversion[2]; /* Their logical versions. */
|
|
|
|
/* [kernel_to_boot] will eventually contain the boot path to follow
|
|
* and is returned to the caller. Initially, we set it to recovery. If
|
|
* a valid bootable kernel is found, it will be set to that. */
|
|
int kernel_to_boot = BOOT_KERNEL_RECOVERY_CONTINUE;
|
|
|
|
|
|
/* The TPM must already have be initialized, so no need to call SetupTPM(). */
|
|
|
|
/* We get the key versions by reading directly from the image blobs without
|
|
* any additional (expensive) sanity checking on the blob since it's faster to
|
|
* outright reject a kernel with an older kernel key version. A malformed
|
|
* or corrupted kernel blob will still fail when VerifyKernel() is called
|
|
* on it.
|
|
*/
|
|
kernelA_lversion = GetLogicalKernelVersion(kernelA->kernel_blob);
|
|
kernelB_lversion = GetLogicalKernelVersion(kernelB->kernel_blob);
|
|
min_lversion = Min(kernelA_lversion, kernelB_lversion);
|
|
stored_lversion = CombineUint16Pair(GetStoredVersion(KERNEL_KEY_VERSION),
|
|
GetStoredVersion(KERNEL_VERSION));
|
|
|
|
/* TODO(gauravsh): The kernel entries kernelA and kernelB come from the
|
|
* partition table - verify its signature/checksum before proceeding
|
|
* further. */
|
|
|
|
/* The logic for deciding which kernel to boot from is taken from the
|
|
* the Chromium OS Drive Map design document.
|
|
*
|
|
* We went to consider the kernels in their according to their boot
|
|
* priority attribute value.
|
|
*/
|
|
|
|
if (kernelA->boot_priority >= kernelB->boot_priority) {
|
|
try_kernel[0] = kernelA;
|
|
try_kernel_which[0] = BOOT_KERNEL_A_CONTINUE;
|
|
try_kernel_lversion[0] = kernelA_lversion;
|
|
try_kernel[1] = kernelB;
|
|
try_kernel_which[1] = BOOT_KERNEL_B_CONTINUE;
|
|
try_kernel_lversion[1] = kernelB_lversion;
|
|
} else {
|
|
try_kernel[0] = kernelB;
|
|
try_kernel_which[0] = BOOT_KERNEL_B_CONTINUE;
|
|
try_kernel_lversion[0] = kernelB_lversion;
|
|
try_kernel[1] = kernelA;
|
|
try_kernel_which[1] = BOOT_KERNEL_A_CONTINUE;
|
|
try_kernel_lversion[1] = kernelA_lversion;
|
|
}
|
|
|
|
/* TODO(gauravsh): Changes to boot_tries_remaining and boot_priority
|
|
* below should be propagated to partition table. This will be added
|
|
* once the firmware parition table parsing code is in. */
|
|
for (i = 0; i < 2; i++) {
|
|
if ((try_kernel[i]->boot_success_flag ||
|
|
try_kernel[i]->boot_tries_remaining) &&
|
|
(VERIFY_KERNEL_SUCCESS == VerifyKernel(firmware_key_blob,
|
|
try_kernel[i]->kernel_blob,
|
|
dev_mode))) {
|
|
if (try_kernel[i]->boot_tries_remaining > 0)
|
|
try_kernel[i]->boot_tries_remaining--;
|
|
if (stored_lversion > try_kernel_lversion[i])
|
|
continue; /* Rollback: I am afraid I can't let you do that Dave. */
|
|
if (i == 0 && (stored_lversion < try_kernel_lversion[1])) {
|
|
/* The higher priority kernel is valid and bootable, See if we
|
|
* need to update the stored version for rollback prevention. */
|
|
if (VERIFY_KERNEL_SUCCESS == VerifyKernel(firmware_key_blob,
|
|
try_kernel[1]->kernel_blob,
|
|
dev_mode)) {
|
|
WriteStoredVersion(KERNEL_KEY_VERSION,
|
|
(uint16_t) (min_lversion >> 16));
|
|
WriteStoredVersion(KERNEL_VERSION,
|
|
(uint16_t) (min_lversion & 0xFFFF));
|
|
stored_lversion = min_lversion; /* Update stored version as it's
|
|
* used later. */
|
|
}
|
|
}
|
|
kernel_to_boot = try_kernel_which[i];
|
|
break; /* We found a valid kernel. */
|
|
}
|
|
try_kernel[i]->boot_priority = 0;
|
|
} /* for loop. */
|
|
|
|
/* Lock Kernel TPM rollback indices from further writes.
|
|
* TODO(gauravsh): Figure out if these can be combined into one
|
|
* 32-bit location since we seem to always use them together. This can help
|
|
* us minimize the number of NVRAM writes/locks (which are limited over flash
|
|
* memory lifetimes.
|
|
*/
|
|
LockStoredVersion(KERNEL_KEY_VERSION);
|
|
LockStoredVersion(KERNEL_VERSION);
|
|
return kernel_to_boot;
|
|
}
|