Files
OpenCellular/driver/accel_kxcj9.c
Gwendal Grignou 4e7e1bb796 motion_sense: Add more complex EC/AP sensor rate support.
Add config settings for ODR and EC rate per requestor and
per power state (1 for the AP, 3 for the EC).
This way we can finely set ec rate and ODR depending on usage.

On chromeos, AP is not setting frequency, so EC sets for different power
state. On some platform, sensors can now be suspended in S3/S5.

Allow EC oversampling when AP is only looking for a few samples.
It is useful for double tap detection where high accelerator ODR is
required.

BRANCH=ryu
TEST=Tested on Ryu
BUG=chromium:513458

Change-Id: Ic3888a749699f07b10c5da3bc07204afd4de70da
Signed-off-by: Gwendal Grignou <gwendal@chromium.org>
Reviewed-on: https://chromium-review.googlesource.com/295637
2015-08-29 01:34:14 -07:00

547 lines
14 KiB
C

/* Copyright (c) 2014 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* KXCJ9 gsensor module for Chrome EC */
#include "accelgyro.h"
#include "common.h"
#include "console.h"
#include "driver/accel_kxcj9.h"
#include "gpio.h"
#include "i2c.h"
#include "math_util.h"
#include "task.h"
#include "timer.h"
#include "util.h"
#define CPUTS(outstr) cputs(CC_ACCEL, outstr)
#define CPRINTF(format, args...) cprintf(CC_ACCEL, format, ## args)
/* Number of times to attempt to enable sensor before giving up. */
#define SENSOR_ENABLE_ATTEMPTS 3
/*
* Struct for pairing an engineering value with the register value for a
* parameter.
*/
struct accel_param_pair {
int val; /* Value in engineering units. */
int reg; /* Corresponding register value. */
};
/* List of range values in +/-G's and their associated register values. */
static const struct accel_param_pair ranges[] = {
{2, KXCJ9_GSEL_2G},
{4, KXCJ9_GSEL_4G},
{8, KXCJ9_GSEL_8G_14BIT}
};
/* List of resolution values in bits and their associated register values. */
static const struct accel_param_pair resolutions[] = {
{8, KXCJ9_RES_8BIT},
{12, KXCJ9_RES_12BIT}
};
/* List of ODR values in mHz and their associated register values. */
static const struct accel_param_pair datarates[] = {
{0, KXCJ9_OSA_0_000HZ},
{781, KXCJ9_OSA_0_781HZ},
{1563, KXCJ9_OSA_1_563HZ},
{3125, KXCJ9_OSA_3_125HZ},
{6250, KXCJ9_OSA_6_250HZ},
{12500, KXCJ9_OSA_12_50HZ},
{25000, KXCJ9_OSA_25_00HZ},
{50000, KXCJ9_OSA_50_00HZ},
{100000, KXCJ9_OSA_100_0HZ},
{200000, KXCJ9_OSA_200_0HZ},
{400000, KXCJ9_OSA_400_0HZ},
{800000, KXCJ9_OSA_800_0HZ},
{1600000, KXCJ9_OSA_1600_HZ}
};
/**
* Find index into a accel_param_pair that matches the given engineering value
* passed in. The round_up flag is used to specify whether to round up or down.
* Note, this function always returns a valid index. If the request is
* outside the range of values, it returns the closest valid index.
*/
static int find_param_index(const int eng_val, const int round_up,
const struct accel_param_pair *pairs, const int size)
{
int i;
/* Linear search for index to match. */
for (i = 0; i < size - 1; i++) {
if (eng_val <= pairs[i].val)
return i;
if (eng_val < pairs[i+1].val) {
if (round_up)
return i + 1;
else
return i;
}
}
return i;
}
/**
* Read register from accelerometer.
*/
static int raw_read8(const int addr, const int reg, int *data_ptr)
{
return i2c_read8(I2C_PORT_ACCEL, addr, reg, data_ptr);
}
/**
* Write register from accelerometer.
*/
static int raw_write8(const int addr, const int reg, int data)
{
return i2c_write8(I2C_PORT_ACCEL, addr, reg, data);
}
/**
* Disable sensor by taking it out of operating mode. When disabled, the
* acceleration data does not change.
*
* Note: This is intended to be called in a pair with enable_sensor().
*
* @data Pointer to motion sensor data
* @ctrl1 Pointer to location to store KXCJ9_CTRL1 register after disabling
*
* @return EC_SUCCESS if successful, EC_ERROR_* otherwise
*/
static int disable_sensor(const struct motion_sensor_t *s, int *ctrl1)
{
int i, ret;
/*
* Read the current state of the ctrl1 register
* so that we can restore it later.
*/
for (i = 0; i < SENSOR_ENABLE_ATTEMPTS; i++) {
ret = raw_read8(s->addr, KXCJ9_CTRL1, ctrl1);
if (ret != EC_SUCCESS)
continue;
*ctrl1 &= ~KXCJ9_CTRL1_PC1;
ret = raw_write8(s->addr, KXCJ9_CTRL1, *ctrl1);
if (ret == EC_SUCCESS)
return EC_SUCCESS;
}
return ret;
}
/**
* Enable sensor by placing it in operating mode.
*
* Note: This is intended to be called in a pair with disable_sensor().
*
* @data Pointer to motion sensor data
* @ctrl1 Value of KXCJ9_CTRL1 register to write to sensor
*
* @return EC_SUCCESS if successful, EC_ERROR_* otherwise
*/
static int enable_sensor(const struct motion_sensor_t *s, int ctrl1)
{
int i, ret;
for (i = 0; i < SENSOR_ENABLE_ATTEMPTS; i++) {
ret = raw_read8(s->addr, KXCJ9_CTRL1, &ctrl1);
if (ret != EC_SUCCESS)
continue;
/* Enable accelerometer based on ctrl1 value. */
ret = raw_write8(s->addr, KXCJ9_CTRL1,
ctrl1 | KXCJ9_CTRL1_PC1);
/* On first success, we are done. */
if (ret == EC_SUCCESS)
return EC_SUCCESS;
}
return ret;
}
static int set_range(const struct motion_sensor_t *s,
int range,
int rnd)
{
int ret, ctrl1, ctrl1_new, index;
struct kxcj9_data *data = s->drv_data;
/* Find index for interface pair matching the specified range. */
index = find_param_index(range, rnd, ranges, ARRAY_SIZE(ranges));
/* Disable the sensor to allow for changing of critical parameters. */
mutex_lock(s->mutex);
ret = disable_sensor(s, &ctrl1);
if (ret != EC_SUCCESS) {
mutex_unlock(s->mutex);
return ret;
}
/* Determine new value of CTRL1 reg and attempt to write it. */
ctrl1_new = (ctrl1 & ~KXCJ9_GSEL_ALL) | ranges[index].reg;
ret = raw_write8(s->addr, KXCJ9_CTRL1, ctrl1_new);
/* If successfully written, then save the range. */
if (ret == EC_SUCCESS) {
data->sensor_range = index;
ctrl1 = ctrl1_new;
}
/* Re-enable the sensor. */
if (enable_sensor(s, ctrl1) != EC_SUCCESS)
ret = EC_ERROR_UNKNOWN;
mutex_unlock(s->mutex);
return ret;
}
static int get_range(const struct motion_sensor_t *s)
{
struct kxcj9_data *data = s->drv_data;
return ranges[data->sensor_range].val;
}
static int set_resolution(const struct motion_sensor_t *s,
int res,
int rnd)
{
int ret, ctrl1, ctrl1_new, index;
struct kxcj9_data *data = s->drv_data;
/* Find index for interface pair matching the specified resolution. */
index = find_param_index(res, rnd, resolutions,
ARRAY_SIZE(resolutions));
/* Disable the sensor to allow for changing of critical parameters. */
mutex_lock(s->mutex);
ret = disable_sensor(s, &ctrl1);
if (ret != EC_SUCCESS) {
mutex_unlock(s->mutex);
return ret;
}
/* Determine new value of CTRL1 reg and attempt to write it. */
ctrl1_new = (ctrl1 & ~KXCJ9_RES_12BIT) | resolutions[index].reg;
ret = raw_write8(s->addr, KXCJ9_CTRL1, ctrl1_new);
/* If successfully written, then save the range. */
if (ret == EC_SUCCESS) {
data->sensor_resolution = index;
ctrl1 = ctrl1_new;
}
/* Re-enable the sensor. */
if (enable_sensor(s, ctrl1) != EC_SUCCESS)
ret = EC_ERROR_UNKNOWN;
mutex_unlock(s->mutex);
return ret;
}
static int get_resolution(const struct motion_sensor_t *s)
{
struct kxcj9_data *data = s->drv_data;
return resolutions[data->sensor_resolution].val;
}
static int set_data_rate(const struct motion_sensor_t *s,
int rate,
int rnd)
{
int ret, ctrl1, index;
struct kxcj9_data *data = s->drv_data;
/* Find index for interface pair matching the specified rate. */
index = find_param_index(rate, rnd, datarates, ARRAY_SIZE(datarates));
/* Disable the sensor to allow for changing of critical parameters. */
mutex_lock(s->mutex);
ret = disable_sensor(s, &ctrl1);
if (ret != EC_SUCCESS) {
mutex_unlock(s->mutex);
return ret;
}
/* Set output data rate. */
ret = raw_write8(s->addr, KXCJ9_DATA_CTRL,
datarates[index].reg);
/* If successfully written, then save the range. */
if (ret == EC_SUCCESS)
data->sensor_datarate = index;
/* Re-enable the sensor. */
if (enable_sensor(s, ctrl1) != EC_SUCCESS)
ret = EC_ERROR_UNKNOWN;
mutex_unlock(s->mutex);
return ret;
}
static int get_data_rate(const struct motion_sensor_t *s)
{
struct kxcj9_data *data = s->drv_data;
return datarates[data->sensor_datarate].val;
}
static int set_offset(const struct motion_sensor_t *s,
const int16_t *offset,
int16_t temp)
{
/* temperature is ignored */
struct kxcj9_data *data = s->drv_data;
data->offset[X] = offset[X];
data->offset[Y] = offset[Y];
data->offset[Z] = offset[Z];
return EC_SUCCESS;
}
static int get_offset(const struct motion_sensor_t *s,
int16_t *offset,
int16_t *temp)
{
struct kxcj9_data *data = s->drv_data;
offset[X] = data->offset[X];
offset[Y] = data->offset[Y];
offset[Z] = data->offset[Z];
*temp = EC_MOTION_SENSE_INVALID_CALIB_TEMP;
return EC_SUCCESS;
}
#ifdef CONFIG_ACCEL_INTERRUPTS
static int set_interrupt(const struct motion_sensor_t *s,
unsigned int threshold)
{
int ctrl1, tmp, ret;
struct kxcj9_data *data = s->drv_data;
/* Disable the sensor to allow for changing of critical parameters. */
mutex_lock(s->mutex);
ret = disable_sensor(s, &ctrl1);
if (ret != EC_SUCCESS) {
mutex_unlock(s->mutex);
return ret;
}
/* Set interrupt timer to 1 so it wakes up immediately. */
ret = raw_write8(s->addr, KXCJ9_WAKEUP_TIMER, 1);
if (ret != EC_SUCCESS)
goto error_enable_sensor;
/*
* Set threshold, note threshold register is in units of 16 counts, so
* first we need to divide by 16 to get the value to send.
*/
threshold >>= 4;
ret = raw_write8(s->addr, KXCJ9_WAKEUP_THRESHOLD, threshold);
if (ret != EC_SUCCESS)
goto error_enable_sensor;
/*
* Set interrupt enable register on sensor. Note that once this
* function is called once, the interrupt stays enabled and it is
* only necessary to clear KXCJ9_INT_REL to allow the next interrupt.
*/
ret = raw_read8(s->addr, KXCJ9_INT_CTRL1, &tmp);
if (ret != EC_SUCCESS)
goto error_enable_sensor;
if (!(tmp & KXCJ9_INT_CTRL1_IEN)) {
ret = raw_write8(s->addr, KXCJ9_INT_CTRL1,
tmp | KXCJ9_INT_CTRL1_IEN);
if (ret != EC_SUCCESS)
goto error_enable_sensor;
}
/*
* Clear any pending interrupt on sensor by reading INT_REL register.
* Note: this register latches motion detected above threshold. Once
* latched, no interrupt can occur until this register is cleared.
*/
ret = raw_read8(s->addr, KXCJ9_INT_REL, &tmp);
error_enable_sensor:
/* Re-enable the sensor. */
if (enable_sensor(s, ctrl1) != EC_SUCCESS)
ret = EC_ERROR_UNKNOWN;
mutex_unlock(s->mutex);
return ret;
}
#endif
static int read(const struct motion_sensor_t *s, vector_3_t v)
{
uint8_t acc[6];
uint8_t reg = KXCJ9_XOUT_L;
int ret, i, range, resolution;
struct kxcj9_data *data = s->drv_data;
/* Read 6 bytes starting at KXCJ9_XOUT_L. */
mutex_lock(s->mutex);
i2c_lock(I2C_PORT_ACCEL, 1);
ret = i2c_xfer(I2C_PORT_ACCEL, s->addr, &reg, 1, acc, 6,
I2C_XFER_SINGLE);
i2c_lock(I2C_PORT_ACCEL, 0);
mutex_unlock(s->mutex);
if (ret != EC_SUCCESS)
return ret;
/*
* Convert acceleration to a signed 16-bit number. Note, based on
* the order of the registers:
*
* acc[0] = KXCJ9_XOUT_L
* acc[1] = KXCJ9_XOUT_H
* acc[2] = KXCJ9_YOUT_L
* acc[3] = KXCJ9_YOUT_H
* acc[4] = KXCJ9_ZOUT_L
* acc[5] = KXCJ9_ZOUT_H
*
* Add calibration offset before returning the data.
*/
resolution = get_resolution(s);
for (i = X; i <= Z; i++) {
v[i] = (((int8_t)acc[i * 2 + 1]) << 4) |
(acc[i * 2] >> 4);
v[i] <<= (16 - resolution);
}
rotate(v, *s->rot_standard_ref, v);
/* apply offset in the device coordinates */
range = get_range(s);
for (i = X; i <= Z; i++)
v[i] += (data->offset[i] << 5) / range;
return EC_SUCCESS;
}
#ifdef CONFIG_ACCEL_INTERRUPTS
static int config_interrupt(const struct motion_sensor_t *s)
{
int ctrl1;
mutex_lock(s->mutex);
/* Disable the sensor to allow for changing of critical parameters. */
ret = disable_sensor(s, &ctrl1);
if (ret != EC_SUCCESS)
goto cleanup_exit;
/* Enable wake up (motion detect) functionality. */
ret = raw_read8(s->addr, KXCJ9_CTRL1, &tmp);
tmp &= ~KXCJ9_CTRL1_PC1;
tmp |= KXCJ9_CTRL1_WUFE;
ret = raw_write8(s->addr, KXCJ9_CTRL1, tmp);
/* Set interrupt polarity to rising edge and keep interrupt disabled. */
ret = raw_write8(s->addr,
KXCJ9_INT_CTRL1,
KXCJ9_INT_CTRL1_IEA);
if (ret != EC_SUCCESS)
goto cleanup_exit;
/* Set output data rate for wake-up interrupt function. */
ret = raw_write8(s->addr, KXCJ9_CTRL2, KXCJ9_OWUF_100_0HZ);
if (ret != EC_SUCCESS)
goto cleanup_exit;
/* Set interrupt to trigger on motion on any axis. */
ret = raw_write8(s->addr, KXCJ9_INT_CTRL2,
KXCJ9_INT_SRC2_XNWU | KXCJ9_INT_SRC2_XPWU |
KXCJ9_INT_SRC2_YNWU | KXCJ9_INT_SRC2_YPWU |
KXCJ9_INT_SRC2_ZNWU | KXCJ9_INT_SRC2_ZPWU);
if (ret != EC_SUCCESS)
goto cleanup_exit;
/*
* Enable accel interrupts. Note: accels will not initiate an interrupt
* until interrupt enable bit in KXCJ9_INT_CTRL1 is set on the device.
*/
gpio_enable_interrupt(GPIO_ACCEL_INT_LID);
gpio_enable_interrupt(GPIO_ACCEL_INT_BASE);
/* Enable the sensor. */
ret = enable_sensor(s, ctrl1);
cleanup_exit:
mutex_unlock(s->mutex);
return ret;
}
#endif
static int init(const struct motion_sensor_t *s)
{
int ret = EC_SUCCESS;
int cnt = 0, tmp;
/*
* This sensor can be powered through an EC reboot, so the state of
* the sensor is unknown here. Initiate software reset to restore
* sensor to default.
*/
mutex_lock(s->mutex);
ret = raw_write8(s->addr, KXCJ9_CTRL2, KXCJ9_CTRL2_SRST);
mutex_unlock(s->mutex);
if (ret != EC_SUCCESS)
return ret;
/* Wait until software reset is complete or timeout. */
do {
/* Added 1m delay after software reset */
msleep(1);
ret = raw_read8(s->addr, KXCJ9_CTRL2, &tmp);
if (ret != EC_SUCCESS)
return ret;
/* Reset complete. */
if (ret == EC_SUCCESS && !(tmp & KXCJ9_CTRL2_SRST))
break;
/* Check for timeout. */
if (cnt++ > 5) {
ret = EC_ERROR_TIMEOUT;
return ret;
}
} while (1);
ret = set_range(s, s->default_range, 1);
if (ret != EC_SUCCESS)
return ret;
ret = set_resolution(s, 12, 1);
if (ret != EC_SUCCESS)
return ret;
#ifdef CONFIG_ACCEL_INTERRUPTS
config_interrupt(s);
#endif
CPRINTF("[%T %s: Done Init type:0x%X range:%d]\n",
s->name, s->type, get_range(s));
return ret;
}
const struct accelgyro_drv kxcj9_drv = {
.init = init,
.read = read,
.set_range = set_range,
.get_range = get_range,
.set_resolution = set_resolution,
.get_resolution = get_resolution,
.set_data_rate = set_data_rate,
.get_data_rate = get_data_rate,
.set_offset = set_offset,
.get_offset = get_offset,
.perform_calib = NULL,
#ifdef CONFIG_ACCEL_INTERRUPTS
.set_interrupt = set_interrupt,
#endif
};