Files
OpenCellular/chip/npcx/system.c
Mulin Chao 375b607761 npcx: system: Add support for npcx7 series ec
This CL implements two methods for hibernating on npcx7 ec. One is using
PSL (Power Switch Logic) circuit to cut off ec's VCC power rail. The
other is turning off the power of all ram blocks except the last code
ram block. In order to make sure hibernate utilities are located in the
last code ram block and work properly, we introduce a new section called
'after_init' in ec.lds.S.

We also moved the hibernate utilities, workarounds for sysjump and so on
which are related to chip family into system-npcx5/7.c. It should be
easier to maintain.

It also includes:
1. Add CONFIG_HIBERNATE_PSL to select which method is used on npcx7 for
   hibernating.
2. Add new flag GPIO_HIB_WAKE_HIGH to configure the active priority of
   wake-up inputs during hibernating.
3. Add DEVICE_ID for npcx796f.

BRANCH=none
BUG=none
TEST=No build errors for all boards using npcx5 series.
     Build poppy board and upload FW to platform. No issues found. Make
     sure AC_PRESENT and POWER_BUTTON_L can wake up system from
     hibernate. Passed hibernate tests no matter CONFIG_HIBERNATE_PSL is
     enabled or not on npcx796f evb.

Change-Id: I4e045ebce4120b6fabaa582ed2ec31b5335dfdc3
Signed-off-by: Mulin Chao <mlchao@nuvoton.com>
Reviewed-on: https://chromium-review.googlesource.com/493006
Reviewed-by: Randall Spangler <rspangler@chromium.org>
2017-05-09 23:20:11 -07:00

873 lines
22 KiB
C

/* Copyright (c) 2014 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* System module for Chrome EC : NPCX hardware specific implementation */
#include "clock.h"
#include "clock_chip.h"
#include "common.h"
#include "console.h"
#include "cpu.h"
#include "gpio.h"
#include "hooks.h"
#include "host_command.h"
#include "hwtimer_chip.h"
#include "registers.h"
#include "rom_chip.h"
#include "system.h"
#include "system_chip.h"
#include "task.h"
#include "timer.h"
#include "util.h"
/* Delay after writing TTC for value to latch */
#define MTC_TTC_LOAD_DELAY_US 250
#define MTC_ALARM_MASK ((1 << 25) - 1)
#define MTC_WUI_GROUP MIWU_GROUP_4
#define MTC_WUI_MASK MASK_PIN7
/* ROM address of chip revision */
#define CHIP_REV_ADDR 0x00007FFC
/* Console output macros */
#define CPUTS(outstr) cputs(CC_SYSTEM, outstr)
#define CPRINTS(format, args...) cprints(CC_SYSTEM, format, ## args)
/*****************************************************************************/
/* Internal functions */
void system_watchdog_reset(void)
{
/* Unlock & stop watchdog registers */
NPCX_WDSDM = 0x87;
NPCX_WDSDM = 0x61;
NPCX_WDSDM = 0x63;
/* Reset TWCFG */
NPCX_TWCFG = 0;
/* Select T0IN clock as watchdog prescaler clock */
SET_BIT(NPCX_TWCFG, NPCX_TWCFG_WDCT0I);
/* Clear watchdog reset status initially*/
SET_BIT(NPCX_T0CSR, NPCX_T0CSR_WDRST_STS);
/* Keep prescaler ratio timer0 clock to 1:1 */
NPCX_TWCP = 0x00;
/* Set internal counter and prescaler */
NPCX_TWDT0 = 0x00;
NPCX_WDCNT = 0x01;
/* Disable interrupt */
interrupt_disable();
/* Reload and restart Timer 0*/
SET_BIT(NPCX_T0CSR, NPCX_T0CSR_RST);
/* Wait for timer is loaded and restart */
while (IS_BIT_SET(NPCX_T0CSR, NPCX_T0CSR_RST))
;
/* Enable interrupt */
interrupt_enable();
}
/* Return true if index is stored as a single byte in bbram */
static int bbram_is_byte_access(enum bbram_data_index index)
{
return (index >= BBRM_DATA_INDEX_VBNVCNTXT &&
index < BBRM_DATA_INDEX_RAMLOG)
#ifdef CONFIG_USB_PD_DUAL_ROLE
|| index == BBRM_DATA_INDEX_PD0
|| index == BBRM_DATA_INDEX_PD1
#endif
;
}
/**
* Read battery-backed ram (BBRAM) at specified index.
*
* @return The value of the register or 0 if invalid index.
*/
static uint32_t bbram_data_read(enum bbram_data_index index)
{
uint32_t value = 0;
int bytes = bbram_is_byte_access(index) ? 1 : 4;
/* Check index */
if (index < 0 || index + bytes >= NPCX_BBRAM_SIZE)
return 0;
/* BBRAM is valid */
if (IS_BIT_SET(NPCX_BKUP_STS, NPCX_BKUP_STS_IBBR))
return 0;
/* Read BBRAM */
if (bytes == 4) {
value += NPCX_BBRAM(index + 3);
value = value << 8;
value += NPCX_BBRAM(index + 2);
value = value << 8;
value += NPCX_BBRAM(index + 1);
value = value << 8;
}
value += NPCX_BBRAM(index);
return value;
}
/**
* Write battery-backed ram (BBRAM) at specified index.
*
* @return nonzero if error.
*/
static int bbram_data_write(enum bbram_data_index index, uint32_t value)
{
int bytes = bbram_is_byte_access(index) ? 1 : 4;
/* Check index */
if (index < 0 || index >= NPCX_BBRAM_SIZE)
return EC_ERROR_INVAL;
/* BBRAM is valid */
if (IS_BIT_SET(NPCX_BKUP_STS, NPCX_BKUP_STS_IBBR))
return EC_ERROR_INVAL;
/* Write BBRAM */
NPCX_BBRAM(index) = value & 0xFF;
if (bytes == 4) {
NPCX_BBRAM(index + 1) = (value >> 8) & 0xFF;
NPCX_BBRAM(index + 2) = (value >> 16) & 0xFF;
NPCX_BBRAM(index + 3) = (value >> 24) & 0xFF;
}
/* Wait for write-complete */
return EC_SUCCESS;
}
/* Map idx to a returned BBRM_DATA_INDEX_*, or return -1 on invalid idx */
static int bbram_idx_lookup(enum system_bbram_idx idx)
{
if (idx >= SYSTEM_BBRAM_IDX_VBNVBLOCK0 &&
idx <= SYSTEM_BBRAM_IDX_VBNVBLOCK15)
return BBRM_DATA_INDEX_VBNVCNTXT +
idx - SYSTEM_BBRAM_IDX_VBNVBLOCK0;
#ifdef CONFIG_USB_PD_DUAL_ROLE
if (idx == SYSTEM_BBRAM_IDX_PD0)
return BBRM_DATA_INDEX_PD0;
if (idx == SYSTEM_BBRAM_IDX_PD1)
return BBRM_DATA_INDEX_PD1;
#endif
return -1;
}
int system_get_bbram(enum system_bbram_idx idx, uint8_t *value)
{
int bbram_idx = bbram_idx_lookup(idx);
if (bbram_idx < 0)
return EC_ERROR_INVAL;
*value = bbram_data_read(bbram_idx);
return EC_SUCCESS;
}
int system_set_bbram(enum system_bbram_idx idx, uint8_t value)
{
int bbram_idx = bbram_idx_lookup(idx);
if (bbram_idx < 0)
return EC_ERROR_INVAL;
return bbram_data_write(bbram_idx, value);
}
/* MTC functions */
uint32_t system_get_rtc_sec(void)
{
/* Get MTC counter unit:seconds */
uint32_t sec = NPCX_TTC;
return sec;
}
void system_set_rtc(uint32_t seconds)
{
/*
* Set MTC counter unit:seconds, write twice to ensure values
* latch to NVMem.
*/
NPCX_TTC = seconds;
udelay(MTC_TTC_LOAD_DELAY_US);
NPCX_TTC = seconds;
udelay(MTC_TTC_LOAD_DELAY_US);
}
void chip_save_reset_flags(int flags)
{
bbram_data_write(BBRM_DATA_INDEX_SAVED_RESET_FLAGS, flags);
}
/* Check reset cause */
void system_check_reset_cause(void)
{
uint32_t hib_wake_flags = bbram_data_read(BBRM_DATA_INDEX_WAKE);
uint32_t flags = bbram_data_read(BBRM_DATA_INDEX_SAVED_RESET_FLAGS);
/* Clear saved reset flags in bbram */
chip_save_reset_flags(0);
/* Clear saved hibernate wake flag in bbram , too */
bbram_data_write(BBRM_DATA_INDEX_WAKE, 0);
/* Use scratch bit to check power on reset or VCC1_RST reset */
if (!IS_BIT_SET(NPCX_RSTCTL, NPCX_RSTCTL_VCC1_RST_SCRATCH)) {
#if defined(BOARD_WHEATLEY) || defined(BOARD_EVE) || defined(BOARD_POPPY) || defined(BOARD_SORAKA)
/* TODO(crosbug.com/p/61028): Remove workaround for Eve */
flags |= RESET_FLAG_RESET_PIN;
#else
/* Check for VCC1 reset */
if (IS_BIT_SET(NPCX_RSTCTL, NPCX_RSTCTL_VCC1_RST_STS))
flags |= RESET_FLAG_RESET_PIN;
else
flags |= RESET_FLAG_POWER_ON;
#endif
}
/*
* Set scratch bit to distinguish VCC1RST# is asserted again
* or not. This bit will be clear automatically when VCC1RST#
* is asserted or power-on reset occurs
*/
SET_BIT(NPCX_RSTCTL, NPCX_RSTCTL_VCC1_RST_SCRATCH);
/* Software debugger reset */
if (IS_BIT_SET(NPCX_RSTCTL, NPCX_RSTCTL_DBGRST_STS)) {
flags |= RESET_FLAG_SOFT;
/* Clear debugger reset status initially*/
SET_BIT(NPCX_RSTCTL, NPCX_RSTCTL_DBGRST_STS);
}
/* Reset by hibernate */
if (hib_wake_flags & HIBERNATE_WAKE_PIN)
flags |= RESET_FLAG_WAKE_PIN | RESET_FLAG_HIBERNATE;
else if (hib_wake_flags & HIBERNATE_WAKE_MTC)
flags |= RESET_FLAG_RTC_ALARM | RESET_FLAG_HIBERNATE;
/* Watchdog Reset */
if (IS_BIT_SET(NPCX_T0CSR, NPCX_T0CSR_WDRST_STS)) {
/*
* Don't set RESET_FLAG_WATCHDOG flag if watchdog is issued by
* system_reset or hibernate in order to distinguish reset cause
* is panic reason or not.
*/
if (!(flags & (RESET_FLAG_SOFT | RESET_FLAG_HARD |
RESET_FLAG_HIBERNATE)))
flags |= RESET_FLAG_WATCHDOG;
/* Clear watchdog reset status initially*/
SET_BIT(NPCX_T0CSR, NPCX_T0CSR_WDRST_STS);
}
system_set_reset_flags(flags);
}
/**
* Chip-level function to set GPIOs and wake-up inputs for hibernate.
*/
void system_set_gpios_and_wakeup_inputs_hibernate(void)
{
int table, i;
/* Disable all MIWU inputs before entering hibernate */
for (table = MIWU_TABLE_0 ; table < MIWU_TABLE_2 ; table++) {
for (i = 0 ; i < 8 ; i++) {
/* Disable all wake-ups */
NPCX_WKEN(table, i) = 0x00;
/* Clear all pending bits of wake-ups */
NPCX_WKPCL(table, i) = 0xFF;
/*
* Disable all inputs of wake-ups to prevent leakage
* caused by input floating.
*/
NPCX_WKINEN(table, i) = 0x00;
}
}
#if defined(CHIP_FAMILY_NPCX7)
/* Disable MIWU 2 group 6 inputs which used for the additional GPIOs */
NPCX_WKEN(MIWU_TABLE_2, MIWU_GROUP_6) = 0x00;
NPCX_WKPCL(MIWU_TABLE_2, MIWU_GROUP_6) = 0xFF;
NPCX_WKINEN(MIWU_TABLE_2, MIWU_GROUP_6) = 0x00;
#endif
/* Enable wake-up inputs of hibernate_wake_pins array */
for (i = 0; i < hibernate_wake_pins_used; i++) {
gpio_reset(hibernate_wake_pins[i]);
/* Re-enable interrupt for wake-up inputs */
gpio_enable_interrupt(hibernate_wake_pins[i]);
#if defined(CONFIG_HIBERNATE_PSL)
/* Config PSL pins setting for wake-up inputs */
if (!system_config_psl_mode(hibernate_wake_pins[i]))
ccprintf("Invalid PSL setting in wake-up pin %d\n", i);
#endif
}
}
/**
* hibernate function for npcx ec.
*
* @param seconds Number of seconds to sleep before LCT alarm
* @param microseconds Number of microseconds to sleep before LCT alarm
*/
void __enter_hibernate(uint32_t seconds, uint32_t microseconds)
{
int i;
/* Disable ADC */
NPCX_ADCCNF = 0;
usleep(1000);
/* Set SPI pins to be in Tri-State */
SET_BIT(NPCX_DEVCNT, NPCX_DEVCNT_F_SPI_TRIS);
/* Disable instant wake up mode for better power consumption */
CLEAR_BIT(NPCX_ENIDL_CTL, NPCX_ENIDL_CTL_LP_WK_CTL);
/* Disable interrupt */
interrupt_disable();
/* ITIM event module disable */
CLEAR_BIT(NPCX_ITCTS(ITIM_EVENT_NO), NPCX_ITCTS_ITEN);
/* ITIM time module disable */
CLEAR_BIT(NPCX_ITCTS(ITIM32), NPCX_ITCTS_ITEN);
/* ITIM watchdog warn module disable */
CLEAR_BIT(NPCX_ITCTS(ITIM_WDG_NO), NPCX_ITCTS_ITEN);
/* Unlock & stop watchdog */
NPCX_WDSDM = 0x87;
NPCX_WDSDM = 0x61;
NPCX_WDSDM = 0x63;
/* Initialize watchdog */
NPCX_TWCFG = 0; /* Select T0IN clock as watchdog prescaler clock */
SET_BIT(NPCX_TWCFG, NPCX_TWCFG_WDCT0I);
NPCX_TWCP = 0x00; /* Keep prescaler ratio timer0 clock to 1:1 */
NPCX_TWDT0 = 0x00; /* Set internal counter and prescaler */
/* Disable interrupt */
interrupt_disable();
/*
* Set gpios and wake-up input for better power consumption before
* entering hibernate.
*/
system_set_gpios_and_wakeup_inputs_hibernate();
/*
* Give the board a chance to do any late stage hibernation work.
* This is likely going to configure GPIOs for hibernation.
*/
if (board_hibernate_late)
board_hibernate_late();
/* Clear all pending IRQ otherwise wfi will have no affect */
for (i = NPCX_IRQ_0 ; i < NPCX_IRQ_COUNT ; i++)
task_clear_pending_irq(i);
/*
* Set RTC interrupt in time to wake up before
* next event.
*/
if (seconds || microseconds)
system_set_rtc_alarm(seconds, microseconds);
/* execute hibernate func depend on chip series */
__hibernate_npcx_series();
}
static char system_to_hex(uint8_t x)
{
if (x >= 0 && x <= 9)
return '0' + x;
return 'a' + x - 10;
}
/*****************************************************************************/
/* IC specific low-level driver */
/*
* Microseconds will be ignored. The WTC register only
* stores wakeup time in seconds.
* Set seconds = 0 to disable the alarm
*/
void system_set_rtc_alarm(uint32_t seconds, uint32_t microseconds)
{
uint32_t cur_secs, alarm_secs;
if (seconds == EC_RTC_ALARM_CLEAR) {
CLEAR_BIT(NPCX_WTC, NPCX_WTC_WIE);
SET_BIT(NPCX_WTC, NPCX_WTC_PTO);
return;
}
/* Get current clock */
cur_secs = NPCX_TTC;
/* If alarm clock is not sequential or not in range */
alarm_secs = cur_secs + seconds;
alarm_secs = alarm_secs & MTC_ALARM_MASK;
/* Reset alarm first */
system_reset_rtc_alarm();
/* Set alarm, use first 25 bits of clock value */
NPCX_WTC = alarm_secs;
/* Enable interrupt mode alarm */
SET_BIT(NPCX_WTC, NPCX_WTC_WIE);
/* Enable MTC interrupt */
task_enable_irq(NPCX_IRQ_MTC_WKINTAD_0);
/* Enable wake-up input sources & clear pending bit */
NPCX_WKPCL(MIWU_TABLE_0, MTC_WUI_GROUP) |= MTC_WUI_MASK;
NPCX_WKINEN(MIWU_TABLE_0, MTC_WUI_GROUP) |= MTC_WUI_MASK;
NPCX_WKEN(MIWU_TABLE_0, MTC_WUI_GROUP) |= MTC_WUI_MASK;
}
void system_reset_rtc_alarm(void)
{
/*
* Clear interrupt & Disable alarm interrupt
* Update alarm value to zero
*/
CLEAR_BIT(NPCX_WTC, NPCX_WTC_WIE);
SET_BIT(NPCX_WTC, NPCX_WTC_PTO);
/* Disable MTC interrupt */
task_disable_irq(NPCX_IRQ_MTC_WKINTAD_0);
}
/*
* Return the seconds remaining before the RTC alarm goes off.
* Returns 0 if alarm is not set.
*/
uint32_t system_get_rtc_alarm(void)
{
/*
* Return 0:
* 1. If alarm is not set to go off, OR
* 2. If alarm is set and has already gone off
*/
if (!IS_BIT_SET(NPCX_WTC, NPCX_WTC_WIE) ||
IS_BIT_SET(NPCX_WTC, NPCX_WTC_PTO)) {
return 0;
}
/* Get seconds before alarm goes off */
return (NPCX_WTC - NPCX_TTC) & MTC_ALARM_MASK;
}
/**
* Enable hibernate interrupt
*/
void system_enable_hib_interrupt(void)
{
task_enable_irq(NPCX_IRQ_MTC_WKINTAD_0);
}
void system_hibernate(uint32_t seconds, uint32_t microseconds)
{
/* Flush console before hibernating */
cflush();
if (board_hibernate)
board_hibernate();
#if SUPPORT_HIB
/* Add additional hibernate operations here */
__enter_hibernate(seconds, microseconds);
#endif
}
void system_pre_init(void)
{
/*
* Add additional initialization here
* EC should be initialized in Booter
*/
/* Power-down the modules we don't need */
NPCX_PWDWN_CTL(NPCX_PMC_PWDWN_1) = 0xF9; /* Skip SDP_PD FIU_PD */
NPCX_PWDWN_CTL(NPCX_PMC_PWDWN_2) = 0xFF;
#if defined(CHIP_FAMILY_NPCX5)
NPCX_PWDWN_CTL(NPCX_PMC_PWDWN_3) = 0x0F; /* Skip GDMA */
#elif defined(CHIP_FAMILY_NPCX7)
NPCX_PWDWN_CTL(NPCX_PMC_PWDWN_3) = 0x1F; /* Skip GDMA */
#endif
NPCX_PWDWN_CTL(NPCX_PMC_PWDWN_4) = 0xF4; /* Skip ITIM2/1_PD */
NPCX_PWDWN_CTL(NPCX_PMC_PWDWN_5) = 0xF8;
NPCX_PWDWN_CTL(NPCX_PMC_PWDWN_6) = 0xF5; /* Skip ITIM5_PD */
#if defined(CHIP_FAMILY_NPCX7)
NPCX_PWDWN_CTL(NPCX_PMC_PWDWN_7) = 0x07;
#endif
/* Following modules can be powered down automatically in npcx7 */
#if defined(CHIP_FAMILY_NPCX5)
/* Power down the modules of npcx5 used internally */
NPCX_INTERNAL_CTRL1 = 0x03;
NPCX_INTERNAL_CTRL2 = 0x03;
NPCX_INTERNAL_CTRL3 = 0x03;
/* Enable low-power regulator */
CLEAR_BIT(NPCX_LFCGCALCNT, NPCX_LFCGCALCNT_LPREG_CTL_EN);
SET_BIT(NPCX_LFCGCALCNT, NPCX_LFCGCALCNT_LPREG_CTL_EN);
#endif
/*
* Configure LPRAM in the MPU as a regular memory
* and DATA RAM to prevent code execution
*/
system_mpu_config();
}
void system_reset(int flags)
{
uint32_t save_flags = 0;
/* Disable interrupts to avoid task swaps during reboot */
interrupt_disable();
/* Save current reset reasons if necessary */
if (flags & SYSTEM_RESET_PRESERVE_FLAGS)
save_flags = system_get_reset_flags() | RESET_FLAG_PRESERVED;
/* Add in AP off flag into saved flags. */
if (flags & SYSTEM_RESET_LEAVE_AP_OFF)
save_flags |= RESET_FLAG_AP_OFF;
/* Save reset flag */
if (flags & SYSTEM_RESET_HARD)
save_flags |= RESET_FLAG_HARD;
else
save_flags |= RESET_FLAG_SOFT;
/* Store flags to battery backed RAM. */
chip_save_reset_flags(save_flags);
/* Ask the watchdog to trigger a hard reboot */
system_watchdog_reset();
/* Spin and wait for reboot; should never return */
while (1)
;
}
/**
* Return the chip vendor/name/revision string.
*/
const char *system_get_chip_vendor(void)
{
static char str[15] = "Unknown-";
char *p = str + 8;
/* Read Vendor ID in core register */
uint8_t fam_id = NPCX_SID_CR;
switch (fam_id) {
case 0x20:
return "Nuvoton";
default:
*p = system_to_hex((fam_id & 0xF0) >> 4);
*(p + 1) = system_to_hex(fam_id & 0x0F);
*(p + 2) = '\0';
return str;
}
}
const char *system_get_chip_name(void)
{
static char str[15] = "Unknown-";
char *p = str + 8;
/* Read Chip ID in core register */
uint8_t chip_id = NPCX_DEVICE_ID_CR;
switch (chip_id) {
#if defined(CHIP_FAMILY_NPCX5)
case 0x12:
return "NPCX585G";
case 0x13:
return "NPCX575G";
case 0x16:
return "NPCX586G";
case 0x17:
return "NPCX576G";
#elif defined(CHIP_FAMILY_NPCX7)
case 0x21:
return "NPCX796F";
#endif
default:
*p = system_to_hex((chip_id & 0xF0) >> 4);
*(p + 1) = system_to_hex(chip_id & 0x0F);
*(p + 2) = '\0';
return str;
}
}
const char *system_get_chip_revision(void)
{
static char rev[5];
/* Read ROM data for chip revision directly */
uint8_t rev_num = *((uint8_t *)CHIP_REV_ADDR);
*(rev) = 'A';
*(rev + 1) = '.';
*(rev + 2) = system_to_hex((rev_num & 0xF0) >> 4);
*(rev + 3) = system_to_hex(rev_num & 0x0F);
*(rev + 4) = '\0';
return rev;
}
BUILD_ASSERT(BBRM_DATA_INDEX_VBNVCNTXT + EC_VBNV_BLOCK_SIZE <= NPCX_BBRAM_SIZE);
/**
* Set a scratchpad register to the specified value.
*
* The scratchpad register must maintain its contents across a
* software-requested warm reset.
*
* @param value Value to store.
* @return EC_SUCCESS, or non-zero if error.
*/
int system_set_scratchpad(uint32_t value)
{
return bbram_data_write(BBRM_DATA_INDEX_SCRATCHPAD, value);
}
uint32_t system_get_scratchpad(void)
{
return bbram_data_read(BBRM_DATA_INDEX_SCRATCHPAD);
}
int system_is_reboot_warm(void)
{
uint32_t reset_flags;
/*
* Check reset cause here,
* gpio_pre_init is executed faster than system_pre_init
*/
system_check_reset_cause();
reset_flags = system_get_reset_flags();
if ((reset_flags & RESET_FLAG_RESET_PIN) ||
(reset_flags & RESET_FLAG_POWER_ON) ||
(reset_flags & RESET_FLAG_WATCHDOG) ||
(reset_flags & RESET_FLAG_HARD) ||
(reset_flags & RESET_FLAG_SOFT) ||
(reset_flags & RESET_FLAG_HIBERNATE))
return 0;
else
return 1;
}
/*****************************************************************************/
/* Console commands */
#ifdef CONFIG_CMD_RTC
void print_system_rtc(enum console_channel ch)
{
uint32_t sec = system_get_rtc_sec();
cprintf(ch, "RTC: 0x%08x (%d.00 s)\n", sec, sec);
}
static int command_system_rtc(int argc, char **argv)
{
if (argc == 3 && !strcasecmp(argv[1], "set")) {
char *e;
uint32_t t = strtoi(argv[2], &e, 0);
if (*e)
return EC_ERROR_PARAM2;
system_set_rtc(t);
} else if (argc > 1) {
return EC_ERROR_INVAL;
}
print_system_rtc(CC_COMMAND);
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(rtc, command_system_rtc,
"[set <seconds>]",
"Get/set real-time clock");
#ifdef CONFIG_CMD_RTC_ALARM
/**
* Test the RTC alarm by setting an interrupt on RTC match.
*/
static int command_rtc_alarm_test(int argc, char **argv)
{
int s = 1, us = 0;
char *e;
ccprintf("Setting RTC alarm\n");
system_enable_hib_interrupt();
if (argc > 1) {
s = strtoi(argv[1], &e, 10);
if (*e)
return EC_ERROR_PARAM1;
}
if (argc > 2) {
us = strtoi(argv[2], &e, 10);
if (*e)
return EC_ERROR_PARAM2;
}
system_set_rtc_alarm(s, us);
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(rtc_alarm, command_rtc_alarm_test,
"[seconds [microseconds]]",
"Test alarm");
#endif /* CONFIG_CMD_RTC_ALARM */
#endif /* CONFIG_CMD_RTC */
/*****************************************************************************/
/* Host commands */
#ifdef CONFIG_HOSTCMD_RTC
static int system_rtc_get_value(struct host_cmd_handler_args *args)
{
struct ec_response_rtc *r = args->response;
r->time = system_get_rtc_sec();
args->response_size = sizeof(*r);
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_RTC_GET_VALUE,
system_rtc_get_value,
EC_VER_MASK(0));
static int system_rtc_set_value(struct host_cmd_handler_args *args)
{
const struct ec_params_rtc *p = args->params;
system_set_rtc(p->time);
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_RTC_SET_VALUE,
system_rtc_set_value,
EC_VER_MASK(0));
static int system_rtc_set_alarm(struct host_cmd_handler_args *args)
{
const struct ec_params_rtc *p = args->params;
system_set_rtc_alarm(p->time, 0);
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_RTC_SET_ALARM,
system_rtc_set_alarm,
EC_VER_MASK(0));
static int system_rtc_get_alarm(struct host_cmd_handler_args *args)
{
struct ec_response_rtc *r = args->response;
r->time = system_get_rtc_alarm();
args->response_size = sizeof(*r);
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_RTC_GET_ALARM,
system_rtc_get_alarm,
EC_VER_MASK(0));
#endif /* CONFIG_HOSTCMD_RTC */
#ifdef CONFIG_EXTERNAL_STORAGE
void system_jump_to_booter(void)
{
enum API_RETURN_STATUS_T status __attribute__((unused));
static uint32_t flash_offset;
static uint32_t flash_used;
static uint32_t addr_entry;
/*
* Get memory offset and size for RO/RW regions.
* Both of them need 16-bytes alignment since GDMA burst mode.
*/
if (IS_BIT_SET(NPCX_FWCTRL, NPCX_FWCTRL_RO_REGION)) {
flash_offset = CONFIG_EC_PROTECTED_STORAGE_OFF +
CONFIG_RO_STORAGE_OFF;
flash_used = CONFIG_RO_SIZE;
} else {
flash_offset = CONFIG_EC_WRITABLE_STORAGE_OFF +
CONFIG_RW_STORAGE_OFF;
flash_used = CONFIG_RW_SIZE;
}
/* Make sure the reset vector is inside the destination image */
addr_entry = *(uintptr_t *)(flash_offset +
CONFIG_MAPPED_STORAGE_BASE + 4);
/*
* Speed up FW download time by increasing clock freq of EC. It will
* restore to default in clock_init() later.
*/
clock_turbo();
/* Bypass for GMDA issue of ROM api utilities */
#if defined(CHIP_FAMILY_NPCX5)
system_download_from_flash(
flash_offset, /* The offset of the data in spi flash */
CONFIG_PROGRAM_MEMORY_BASE, /* RAM Addr of downloaded data */
flash_used, /* Number of bytes to download */
addr_entry /* jump to this address after download */
);
#else
download_from_flash(
flash_offset, /* The offset of the data in spi flash */
CONFIG_PROGRAM_MEMORY_BASE, /* RAM Addr of downloaded data */
flash_used, /* Number of bytes to download */
SIGN_NO_CHECK, /* Need CRC check or not */
addr_entry, /* jump to this address after download */
&status /* Status fo download */
);
#endif
}
uint32_t system_get_lfw_address()
{
/*
* In A3 version, we don't use little FW anymore
* We provide the alternative function in ROM
*/
uint32_t jump_addr = (uint32_t)system_jump_to_booter;
return jump_addr;
}
void system_set_image_copy(enum system_image_copy_t copy)
{
/* Jump to RW region -- clear flag */
if (copy == SYSTEM_IMAGE_RW)
CLEAR_BIT(NPCX_FWCTRL, NPCX_FWCTRL_RO_REGION);
else /* Jump to RO region -- set flag */
SET_BIT(NPCX_FWCTRL, NPCX_FWCTRL_RO_REGION);
}
enum system_image_copy_t system_get_shrspi_image_copy(void)
{
/* RO region FW */
if (IS_BIT_SET(NPCX_FWCTRL, NPCX_FWCTRL_RO_REGION))
return SYSTEM_IMAGE_RO;
else/* RW region FW */
return SYSTEM_IMAGE_RW;
}
#endif