Files
OpenCellular/firmware/2lib/2api.c
Randall Spangler 4eef812d68 vboot2: use enum hash algorithm
This changes the internals of vboot2 to use the enumerated type for
hash algorithm.  The conversion from crypto algorithm is done only
when unpacking the key (and ok, in checking the rsa padding, but that
goes away in the next change).  This is preparation for the vboot2
data types, which separate signature and hash algorithms into their
own fields.

There is no external change in the calling API to vboot, and no change
to the external data structures.

BUG=chromium:423882
BRANCH=none
TEST=VBOOT2=1 make runtests

Change-Id: I9c6de08d742dab941beb806fbd2bfc1e11c01e2c
Signed-off-by: Randall Spangler <rspangler@chromium.org>
Reviewed-on: https://chromium-review.googlesource.com/225208
Reviewed-by: Daisuke Nojiri <dnojiri@chromium.org>
Reviewed-by: Bill Richardson <wfrichar@chromium.org>
2014-10-28 03:13:07 +00:00

286 lines
6.9 KiB
C

/* Copyright (c) 2014 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*
* Externally-callable APIs
* (Firmware portion)
*/
#include "2sysincludes.h"
#include "2api.h"
#include "2common.h"
#include "2misc.h"
#include "2nvstorage.h"
#include "2secdata.h"
#include "2sha.h"
#include "2rsa.h"
int vb2api_secdata_check(const struct vb2_context *ctx)
{
return vb2_secdata_check_crc(ctx);
}
int vb2api_secdata_create(struct vb2_context *ctx)
{
return vb2_secdata_create(ctx);
}
void vb2api_fail(struct vb2_context *ctx, uint8_t reason, uint8_t subcode)
{
/* Initialize the vboot context if it hasn't been yet */
vb2_init_context(ctx);
vb2_fail(ctx, reason, subcode);
}
int vb2api_fw_phase1(struct vb2_context *ctx)
{
struct vb2_shared_data *sd = vb2_get_sd(ctx);
int rv;
/* Initialize the vboot context if it hasn't been yet */
vb2_init_context(ctx);
/* Initialize NV context */
vb2_nv_init(ctx);
/* Initialize secure data */
rv = vb2_secdata_init(ctx);
if (rv)
sd->recovery_reason = VB2_RECOVERY_SECDATA_INIT;
/*
* Check for recovery. Note that this function returns void, since
* any errors result in requesting recovery.
*/
vb2_check_recovery(ctx);
/* Return error if recovery is needed */
if (ctx->flags & VB2_CONTEXT_RECOVERY_MODE) {
/* Always clear RAM when entering recovery mode */
ctx->flags |= VB2_CONTEXT_CLEAR_RAM;
return VB2_ERROR_API_PHASE1_RECOVERY;
}
return VB2_SUCCESS;
}
int vb2api_fw_phase2(struct vb2_context *ctx)
{
int rv;
/* Load and parse the GBB header */
rv = vb2_fw_parse_gbb(ctx);
if (rv) {
vb2_fail(ctx, VB2_RECOVERY_GBB_HEADER, rv);
return rv;
}
/* Check for dev switch */
rv = vb2_check_dev_switch(ctx);
if (rv) {
vb2_fail(ctx, VB2_RECOVERY_DEV_SWITCH, rv);
return rv;
}
/* Always clear RAM when entering developer mode */
if (ctx->flags & VB2_CONTEXT_DEVELOPER_MODE)
ctx->flags |= VB2_CONTEXT_CLEAR_RAM;
/* Check for explicit request to clear TPM */
rv = vb2_check_tpm_clear(ctx);
if (rv) {
vb2_fail(ctx, VB2_RECOVERY_TPM_CLEAR_OWNER, rv);
return rv;
}
/* Decide which firmware slot to try this boot */
rv = vb2_select_fw_slot(ctx);
if (rv) {
vb2_fail(ctx, VB2_RECOVERY_FW_SLOT, rv);
return rv;
}
return VB2_SUCCESS;
}
int vb2api_fw_phase3(struct vb2_context *ctx)
{
int rv;
/* Verify firmware keyblock */
rv = vb2_verify_fw_keyblock(ctx);
if (rv) {
vb2_fail(ctx, VB2_RECOVERY_RO_INVALID_RW, rv);
return rv;
}
/* Verify firmware preamble */
rv = vb2_verify_fw_preamble2(ctx);
if (rv) {
vb2_fail(ctx, VB2_RECOVERY_RO_INVALID_RW, rv);
return rv;
}
return VB2_SUCCESS;
}
int vb2api_init_hash(struct vb2_context *ctx, uint32_t tag, uint32_t *size)
{
struct vb2_shared_data *sd = vb2_get_sd(ctx);
const struct vb2_fw_preamble *pre;
struct vb2_digest_context *dc;
struct vb2_public_key key;
struct vb2_workbuf wb;
int rv;
vb2_workbuf_from_ctx(ctx, &wb);
if (tag == VB2_HASH_TAG_INVALID)
return VB2_ERROR_API_INIT_HASH_TAG;
/* Get preamble pointer */
if (!sd->workbuf_preamble_size)
return VB2_ERROR_API_INIT_HASH_PREAMBLE;
pre = (const struct vb2_fw_preamble *)
(ctx->workbuf + sd->workbuf_preamble_offset);
/* For now, we only support the firmware body tag */
if (tag != VB2_HASH_TAG_FW_BODY)
return VB2_ERROR_API_INIT_HASH_TAG;
/* Allocate workbuf space for the hash */
if (sd->workbuf_hash_size) {
dc = (struct vb2_digest_context *)
(ctx->workbuf + sd->workbuf_hash_offset);
} else {
uint32_t dig_size = sizeof(*dc);
dc = vb2_workbuf_alloc(&wb, dig_size);
if (!dc)
return VB2_ERROR_API_INIT_HASH_WORKBUF;
sd->workbuf_hash_offset = vb2_offset_of(ctx->workbuf, dc);
sd->workbuf_hash_size = dig_size;
ctx->workbuf_used = sd->workbuf_hash_offset + dig_size;
}
/*
* Unpack the firmware data key to see which hashing algorithm we
* should use.
*
* TODO: really, the firmware body should be hashed, and not signed,
* because the signature we're checking is already signed as part of
* the firmware preamble. But until we can change the signing scripts,
* we're stuck with a signature here instead of a hash.
*/
if (!sd->workbuf_data_key_size)
return VB2_ERROR_API_INIT_HASH_DATA_KEY;
rv = vb2_unpack_key(&key,
ctx->workbuf + sd->workbuf_data_key_offset,
sd->workbuf_data_key_size);
if (rv)
return rv;
sd->hash_tag = tag;
sd->hash_remaining_size = pre->body_signature.data_size;
if (size)
*size = pre->body_signature.data_size;
return vb2_digest_init(dc, key.hash_alg);
}
int vb2api_extend_hash(struct vb2_context *ctx,
const void *buf,
uint32_t size)
{
struct vb2_shared_data *sd = vb2_get_sd(ctx);
struct vb2_digest_context *dc = (struct vb2_digest_context *)
(ctx->workbuf + sd->workbuf_hash_offset);
/* Must have initialized hash digest work area */
if (!sd->workbuf_hash_size)
return VB2_ERROR_API_EXTEND_HASH_WORKBUF;
/* Don't extend past the data we expect to hash */
if (!size || size > sd->hash_remaining_size)
return VB2_ERROR_API_EXTEND_HASH_SIZE;
sd->hash_remaining_size -= size;
return vb2_digest_extend(dc, buf, size);
}
int vb2api_check_hash(struct vb2_context *ctx)
{
struct vb2_shared_data *sd = vb2_get_sd(ctx);
struct vb2_digest_context *dc = (struct vb2_digest_context *)
(ctx->workbuf + sd->workbuf_hash_offset);
struct vb2_workbuf wb;
uint8_t *digest;
uint32_t digest_size = vb2_digest_size(dc->hash_alg);
struct vb2_fw_preamble *pre;
struct vb2_public_key key;
int rv;
vb2_workbuf_from_ctx(ctx, &wb);
/* Get preamble pointer */
if (!sd->workbuf_preamble_size)
return VB2_ERROR_API_CHECK_HASH_PREAMBLE;
pre = (struct vb2_fw_preamble *)
(ctx->workbuf + sd->workbuf_preamble_offset);
/* Must have initialized hash digest work area */
if (!sd->workbuf_hash_size)
return VB2_ERROR_API_CHECK_HASH_WORKBUF;
/* Should have hashed the right amount of data */
if (sd->hash_remaining_size)
return VB2_ERROR_API_CHECK_HASH_SIZE;
/* Allocate the digest */
digest = vb2_workbuf_alloc(&wb, digest_size);
if (!digest)
return VB2_ERROR_API_CHECK_HASH_WORKBUF_DIGEST;
/* Finalize the digest */
rv = vb2_digest_finalize(dc, digest, digest_size);
if (rv)
return rv;
/* The code below is specific to the body signature */
if (sd->hash_tag != VB2_HASH_TAG_FW_BODY)
return VB2_ERROR_API_CHECK_HASH_TAG;
/*
* The body signature is currently a *signature* of the body data, not
* just its hash. So we need to verify the signature.
*/
/* Unpack the data key */
if (!sd->workbuf_data_key_size)
return VB2_ERROR_API_CHECK_HASH_DATA_KEY;
rv = vb2_unpack_key(&key,
ctx->workbuf + sd->workbuf_data_key_offset,
sd->workbuf_data_key_size);
if (rv)
return rv;
/*
* Check digest vs. signature. Note that this destroys the signature.
* That's ok, because we only check each signature once per boot.
*/
rv = vb2_verify_digest(&key, &pre->body_signature, digest, &wb);
if (rv)
vb2_fail(ctx, VB2_RECOVERY_RO_INVALID_RW, rv);
return rv;
}