Files
OpenCellular/firmware/lib/vboot_kernel.c
Dan Ehrenberg 5040a945df vboot: Plumb the two disk sizes and 'gpt on device' param through
To support an external GPT, disks have two new attributes:
- A binary flag indicating whether the GPT is in the same address
  space as the payloads or a separate one.
- The number of sectors of the streaming portion of storage, as
  opposed to the portion containing the GPT.
These have been added elsewhere to GptData (in cgptlib) and BlockDev
(in depthcharge). This patch adds the plumbing between those, including
in the DiskInfo interface between the firmware and vboot.

BUG=chromium:425677
BRANCH=none
TEST=Interactively wrote the GPT with cgpt and observed the following
boot with depthcharge to read the GPT from SPI and then read from
the proper locations in NAND flash.
make runalltests passes.

Signed-off-by: Dan Ehrenberg <dehrenberg@chromium.org>
Change-Id: I5a77e417aea8ee9442d18c200d1b073aa5375ecf
Reviewed-on: https://chromium-review.googlesource.com/228943
Reviewed-by: Randall Spangler <rspangler@chromium.org>
Reviewed-by: Bill Richardson <wfrichar@chromium.org>
2014-11-15 01:13:52 +00:00

543 lines
16 KiB
C

/* Copyright (c) 2013 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*
* Functions for loading a kernel from disk.
* (Firmware portion)
*/
#include "sysincludes.h"
#include "cgptlib.h"
#include "cgptlib_internal.h"
#include "region.h"
#include "gbb_access.h"
#include "gbb_header.h"
#include "gpt_misc.h"
#include "load_kernel_fw.h"
#include "utility.h"
#include "vboot_api.h"
#include "vboot_common.h"
#include "vboot_kernel.h"
#define KBUF_SIZE 65536 /* Bytes to read at start of kernel partition */
#define LOWEST_TPM_VERSION 0xffffffff
typedef enum BootMode {
kBootRecovery = 0, /* Recovery firmware, any dev switch position */
kBootNormal = 1, /* Normal boot - kernel must be verified */
kBootDev = 2 /* Developer boot - self-signed kernel ok */
} BootMode;
VbError_t LoadKernel(LoadKernelParams *params, VbCommonParams *cparams)
{
VbSharedDataHeader *shared =
(VbSharedDataHeader *)params->shared_data_blob;
VbSharedDataKernelCall *shcall = NULL;
VbNvContext* vnc = params->nv_context;
VbPublicKey* kernel_subkey = NULL;
int free_kernel_subkey = 0;
GptData gpt;
uint64_t part_start, part_size;
uint64_t blba;
uint64_t kbuf_sectors;
uint8_t* kbuf = NULL;
int found_partitions = 0;
int good_partition = -1;
int good_partition_key_block_valid = 0;
uint32_t lowest_version = LOWEST_TPM_VERSION;
int rec_switch, dev_switch;
BootMode boot_mode;
uint32_t require_official_os = 0;
uint32_t body_toread;
uint8_t *body_readptr;
VbError_t retval = VBERROR_UNKNOWN;
int recovery = VBNV_RECOVERY_LK_UNSPECIFIED;
/* Sanity Checks */
if (!params->bytes_per_lba ||
!params->ending_lba) {
VBDEBUG(("LoadKernel() called with invalid params\n"));
retval = VBERROR_INVALID_PARAMETER;
goto LoadKernelExit;
}
/* Clear output params in case we fail */
params->partition_number = 0;
params->bootloader_address = 0;
params->bootloader_size = 0;
/* Calculate switch positions and boot mode */
rec_switch = (BOOT_FLAG_RECOVERY & params->boot_flags ? 1 : 0);
dev_switch = (BOOT_FLAG_DEVELOPER & params->boot_flags ? 1 : 0);
if (rec_switch) {
boot_mode = kBootRecovery;
} else if (dev_switch) {
boot_mode = kBootDev;
VbNvGet(vnc, VBNV_DEV_BOOT_SIGNED_ONLY, &require_official_os);
} else {
boot_mode = kBootNormal;
}
/*
* Set up tracking for this call. This wraps around if called many
* times, so we need to initialize the call entry each time.
*/
shcall = shared->lk_calls + (shared->lk_call_count
& (VBSD_MAX_KERNEL_CALLS - 1));
Memset(shcall, 0, sizeof(VbSharedDataKernelCall));
shcall->boot_flags = (uint32_t)params->boot_flags;
shcall->boot_mode = boot_mode;
shcall->sector_size = (uint32_t)params->bytes_per_lba;
shcall->sector_count = params->ending_lba + 1;
shared->lk_call_count++;
/* Initialization */
blba = params->bytes_per_lba;
kbuf_sectors = KBUF_SIZE / blba;
if (0 == kbuf_sectors) {
VBDEBUG(("LoadKernel() called with sector size > KBUF_SIZE\n"));
retval = VBERROR_INVALID_PARAMETER;
goto LoadKernelExit;
}
if (kBootRecovery == boot_mode) {
/* Use the recovery key to verify the kernel */
retval = VbGbbReadRecoveryKey(cparams, &kernel_subkey);
if (VBERROR_SUCCESS != retval)
goto LoadKernelExit;
free_kernel_subkey = 1;
} else {
/* Use the kernel subkey passed from LoadFirmware(). */
kernel_subkey = &shared->kernel_subkey;
}
/* Read GPT data */
gpt.sector_bytes = (uint32_t)blba;
gpt.drive_sectors = params->ending_lba + 1;
gpt.gpt_drive_sectors = params->gpt_lba_count;
gpt.stored_on_device = params->external_gpt ? GPT_STORED_OFF_DEVICE
: GPT_STORED_ON_DEVICE;
if (0 != AllocAndReadGptData(params->disk_handle, &gpt)) {
VBDEBUG(("Unable to read GPT data\n"));
shcall->check_result = VBSD_LKC_CHECK_GPT_READ_ERROR;
goto bad_gpt;
}
/* Initialize GPT library */
if (GPT_SUCCESS != GptInit(&gpt)) {
VBDEBUG(("Error parsing GPT\n"));
shcall->check_result = VBSD_LKC_CHECK_GPT_PARSE_ERROR;
goto bad_gpt;
}
/* Allocate kernel header buffers */
kbuf = (uint8_t*)VbExMalloc(KBUF_SIZE);
if (!kbuf)
goto bad_gpt;
/* Loop over candidate kernel partitions */
while (GPT_SUCCESS ==
GptNextKernelEntry(&gpt, &part_start, &part_size)) {
VbSharedDataKernelPart *shpart = NULL;
VbKeyBlockHeader *key_block;
VbKernelPreambleHeader *preamble;
RSAPublicKey *data_key = NULL;
VbExStream_t stream = NULL;
uint64_t key_version;
uint32_t combined_version;
uint64_t body_offset;
int key_block_valid = 1;
VBDEBUG(("Found kernel entry at %" PRIu64 " size %" PRIu64 "\n",
part_start, part_size));
/*
* Set up tracking for this partition. This wraps around if
* called many times, so initialize the partition entry each
* time.
*/
shpart = shcall->parts + (shcall->kernel_parts_found
& (VBSD_MAX_KERNEL_PARTS - 1));
Memset(shpart, 0, sizeof(VbSharedDataKernelPart));
shpart->sector_start = part_start;
shpart->sector_count = part_size;
/*
* TODO: GPT partitions start at 1, but cgptlib starts them at
* 0. Adjust here, until cgptlib is fixed.
*/
shpart->gpt_index = (uint8_t)(gpt.current_kernel + 1);
shcall->kernel_parts_found++;
/* Found at least one kernel partition. */
found_partitions++;
/* Set up the stream */
if (VbExStreamOpen(params->disk_handle,
part_start, part_size, &stream)) {
VBDEBUG(("Partition error getting stream.\n"));
shpart->check_result = VBSD_LKP_CHECK_TOO_SMALL;
goto bad_kernel;
}
if (0 != VbExStreamRead(stream, KBUF_SIZE, kbuf)) {
VBDEBUG(("Unable to read start of partition.\n"));
shpart->check_result = VBSD_LKP_CHECK_READ_START;
goto bad_kernel;
}
/* Verify the key block. */
key_block = (VbKeyBlockHeader*)kbuf;
if (0 != KeyBlockVerify(key_block, KBUF_SIZE,
kernel_subkey, 0)) {
VBDEBUG(("Verifying key block signature failed.\n"));
shpart->check_result = VBSD_LKP_CHECK_KEY_BLOCK_SIG;
key_block_valid = 0;
/* If not in developer mode, this kernel is bad. */
if (kBootDev != boot_mode)
goto bad_kernel;
/*
* In developer mode, we can explictly disallow
* self-signed kernels
*/
if (require_official_os) {
VBDEBUG(("Self-signed kernels not enabled.\n"));
shpart->check_result =
VBSD_LKP_CHECK_SELF_SIGNED;
goto bad_kernel;
}
/*
* Allow the kernel if the SHA-512 hash of the key
* block is valid.
*/
if (0 != KeyBlockVerify(key_block, KBUF_SIZE,
kernel_subkey, 1)) {
VBDEBUG(("Verifying key block hash failed.\n"));
shpart->check_result =
VBSD_LKP_CHECK_KEY_BLOCK_HASH;
goto bad_kernel;
}
}
/* Check the key block flags against the current boot mode. */
if (!(key_block->key_block_flags &
(dev_switch ? KEY_BLOCK_FLAG_DEVELOPER_1 :
KEY_BLOCK_FLAG_DEVELOPER_0))) {
VBDEBUG(("Key block developer flag mismatch.\n"));
shpart->check_result = VBSD_LKP_CHECK_DEV_MISMATCH;
key_block_valid = 0;
}
if (!(key_block->key_block_flags &
(rec_switch ? KEY_BLOCK_FLAG_RECOVERY_1 :
KEY_BLOCK_FLAG_RECOVERY_0))) {
VBDEBUG(("Key block recovery flag mismatch.\n"));
shpart->check_result = VBSD_LKP_CHECK_REC_MISMATCH;
key_block_valid = 0;
}
/* Check for rollback of key version except in recovery mode. */
key_version = key_block->data_key.key_version;
if (kBootRecovery != boot_mode) {
if (key_version < (shared->kernel_version_tpm >> 16)) {
VBDEBUG(("Key version too old.\n"));
shpart->check_result =
VBSD_LKP_CHECK_KEY_ROLLBACK;
key_block_valid = 0;
}
if (key_version > 0xFFFF) {
/*
* Key version is stored in 16 bits in the TPM,
* so key versions greater than 0xFFFF can't be
* stored properly.
*/
VBDEBUG(("Key version > 0xFFFF.\n"));
shpart->check_result =
VBSD_LKP_CHECK_KEY_ROLLBACK;
key_block_valid = 0;
}
}
/* If not in developer mode, key block required to be valid. */
if (kBootDev != boot_mode && !key_block_valid) {
VBDEBUG(("Key block is invalid.\n"));
goto bad_kernel;
}
/* Get key for preamble/data verification from the key block. */
data_key = PublicKeyToRSA(&key_block->data_key);
if (!data_key) {
VBDEBUG(("Data key bad.\n"));
shpart->check_result = VBSD_LKP_CHECK_DATA_KEY_PARSE;
goto bad_kernel;
}
/* Verify the preamble, which follows the key block */
preamble = (VbKernelPreambleHeader *)
(kbuf + key_block->key_block_size);
if ((0 != VerifyKernelPreamble(
preamble,
KBUF_SIZE - key_block->key_block_size,
data_key))) {
VBDEBUG(("Preamble verification failed.\n"));
shpart->check_result = VBSD_LKP_CHECK_VERIFY_PREAMBLE;
goto bad_kernel;
}
/*
* If the key block is valid and we're not in recovery mode,
* check for rollback of the kernel version.
*/
combined_version = (uint32_t)(
(key_version << 16) |
(preamble->kernel_version & 0xFFFF));
shpart->combined_version = combined_version;
if (key_block_valid && kBootRecovery != boot_mode) {
if (combined_version < shared->kernel_version_tpm) {
VBDEBUG(("Kernel version too low.\n"));
shpart->check_result =
VBSD_LKP_CHECK_KERNEL_ROLLBACK;
/*
* If not in developer mode, kernel version
* must be valid.
*/
if (kBootDev != boot_mode)
goto bad_kernel;
}
}
VBDEBUG(("Kernel preamble is good.\n"));
shpart->check_result = VBSD_LKP_CHECK_PREAMBLE_VALID;
/* Check for lowest version from a valid header. */
if (key_block_valid && lowest_version > combined_version)
lowest_version = combined_version;
else {
VBDEBUG(("Key block valid: %d\n", key_block_valid));
VBDEBUG(("Combined version: %u\n",
(unsigned) combined_version));
}
/*
* If we already have a good kernel, no need to read another
* one; we only needed to look at the versions to check for
* rollback. So skip to the next kernel preamble.
*/
if (-1 != good_partition) {
VbExStreamClose(stream);
stream = NULL;
continue;
}
body_offset = key_block->key_block_size +
preamble->preamble_size;
/*
* Make sure the kernel starts at or before what we already
* read into kbuf.
*
* We could deal with a larger offset by reading and discarding
* the data in between the vblock and the kernel data.
*/
if (body_offset > KBUF_SIZE) {
shpart->check_result = VBSD_LKP_CHECK_BODY_OFFSET;
VBDEBUG(("Kernel body offset is %d > 64KB.\n",
(int)body_offset));
goto bad_kernel;
}
if (!params->kernel_buffer) {
/* Get kernel load address and size from the header. */
params->kernel_buffer =
(void *)((long)preamble->body_load_address);
params->kernel_buffer_size =
preamble->body_signature.data_size;
} else if (preamble->body_signature.data_size >
params->kernel_buffer_size) {
VBDEBUG(("Kernel body doesn't fit in memory.\n"));
shpart->check_result = VBSD_LKP_CHECK_BODY_EXCEEDS_MEM;
goto bad_kernel;
}
/*
* Body signature data size is 64 bit and toread is 32 bit so
* this could technically cause us to read less data. That's
* fine, because a 4 GB kernel is implausible, and if we did
* have one that big, we'd simply read too little data and fail
* to verify it.
*/
body_toread = preamble->body_signature.data_size;
body_readptr = params->kernel_buffer;
/*
* If we've already read part of the kernel, copy that to the
* beginning of the kernel buffer.
*/
if (body_offset < KBUF_SIZE) {
uint32_t body_copied = KBUF_SIZE - body_offset;
/* If the kernel is tiny, don't over-copy */
if (body_copied > body_toread)
body_copied = body_toread;
Memcpy(body_readptr, kbuf + body_offset, body_copied);
body_toread -= body_copied;
body_readptr += body_copied;
}
/* Read the kernel data */
if (body_toread &&
0 != VbExStreamRead(stream, body_toread, body_readptr)) {
VBDEBUG(("Unable to read kernel data.\n"));
shpart->check_result = VBSD_LKP_CHECK_READ_DATA;
goto bad_kernel;
}
/* Close the stream; we're done with it */
VbExStreamClose(stream);
stream = NULL;
/* Verify kernel data */
if (0 != VerifyData((const uint8_t *)params->kernel_buffer,
params->kernel_buffer_size,
&preamble->body_signature, data_key)) {
VBDEBUG(("Kernel data verification failed.\n"));
shpart->check_result = VBSD_LKP_CHECK_VERIFY_DATA;
goto bad_kernel;
}
/* Done with the kernel signing key, so can free it now */
RSAPublicKeyFree(data_key);
data_key = NULL;
/*
* If we're still here, the kernel is valid. Save the first
* good partition we find; that's the one we'll boot.
*/
VBDEBUG(("Partition is good.\n"));
shpart->check_result = VBSD_LKP_CHECK_KERNEL_GOOD;
if (key_block_valid)
shpart->flags |= VBSD_LKP_FLAG_KEY_BLOCK_VALID;
good_partition_key_block_valid = key_block_valid;
/*
* TODO: GPT partitions start at 1, but cgptlib starts them at
* 0. Adjust here, until cgptlib is fixed.
*/
good_partition = gpt.current_kernel + 1;
params->partition_number = gpt.current_kernel + 1;
GetCurrentKernelUniqueGuid(&gpt, &params->partition_guid);
/*
* TODO: GetCurrentKernelUniqueGuid() should take a destination
* size, or the dest should be a struct, so we know it's big
* enough.
*/
params->bootloader_address = preamble->bootloader_address;
params->bootloader_size = preamble->bootloader_size;
/* Update GPT to note this is the kernel we're trying */
GptUpdateKernelEntry(&gpt, GPT_UPDATE_ENTRY_TRY);
/*
* If we're in recovery mode or we're about to boot a
* dev-signed kernel, there's no rollback protection, so we can
* stop at the first valid kernel.
*/
if (kBootRecovery == boot_mode || !key_block_valid) {
VBDEBUG(("In recovery mode or dev-signed kernel\n"));
break;
}
/*
* Otherwise, we do care about the key index in the TPM. If
* the good partition's key version is the same as the tpm,
* then the TPM doesn't need updating; we can stop now.
* Otherwise, we'll check all the other headers to see if they
* contain a newer key.
*/
if (combined_version == shared->kernel_version_tpm) {
VBDEBUG(("Same kernel version\n"));
break;
}
/* Continue, so that we skip the error handling code below */
continue;
bad_kernel:
/* Handle errors parsing this kernel */
if (NULL != stream)
VbExStreamClose(stream);
if (NULL != data_key)
RSAPublicKeyFree(data_key);
VBDEBUG(("Marking kernel as invalid.\n"));
GptUpdateKernelEntry(&gpt, GPT_UPDATE_ENTRY_BAD);
} /* while(GptNextKernelEntry) */
bad_gpt:
/* Free kernel buffer */
if (kbuf)
VbExFree(kbuf);
/* Write and free GPT data */
WriteAndFreeGptData(params->disk_handle, &gpt);
/* Handle finding a good partition */
if (good_partition >= 0) {
VBDEBUG(("Good_partition >= 0\n"));
shcall->check_result = VBSD_LKC_CHECK_GOOD_PARTITION;
shared->kernel_version_lowest = lowest_version;
/*
* Sanity check - only store a new TPM version if we found one.
* If lowest_version is still at its initial value, we didn't
* find one; for example, we're in developer mode and just
* didn't look.
*/
if (lowest_version != LOWEST_TPM_VERSION &&
lowest_version > shared->kernel_version_tpm)
shared->kernel_version_tpm = lowest_version;
/* Success! */
retval = VBERROR_SUCCESS;
} else if (found_partitions > 0) {
shcall->check_result = VBSD_LKC_CHECK_INVALID_PARTITIONS;
recovery = VBNV_RECOVERY_RW_INVALID_OS;
retval = VBERROR_INVALID_KERNEL_FOUND;
} else {
shcall->check_result = VBSD_LKC_CHECK_NO_PARTITIONS;
recovery = VBNV_RECOVERY_RW_NO_OS;
retval = VBERROR_NO_KERNEL_FOUND;
}
LoadKernelExit:
/* Store recovery request, if any */
VbNvSet(vnc, VBNV_RECOVERY_REQUEST, VBERROR_SUCCESS != retval ?
recovery : VBNV_RECOVERY_NOT_REQUESTED);
/*
* If LoadKernel() was called with bad parameters, shcall may not be
* initialized.
*/
if (shcall)
shcall->return_code = (uint8_t)retval;
/* Save whether the good partition's key block was fully verified */
if (good_partition_key_block_valid)
shared->flags |= VBSD_KERNEL_KEY_VERIFIED;
/* Store how much shared data we used, if any */
params->shared_data_size = shared->data_used;
if (free_kernel_subkey)
VbExFree(kernel_subkey);
return retval;
}