Files
OpenCellular/common/flash.c
Shawn Nematbakhsh 558c465165 cleanup: Remove CDRAM / CODERAM CONFIGs
CDRAM / CODERAM configs were previously used for chips which copied code
from external SPI to program memory prior to execution, and were used
inconsistently between npcx and mec1322.

These CONFIGs are now completely redundant given new configs like
CONFIG_MAPPED_STORAGE_BASE and CONFIG_EXTERNAL_STORAGE.

BRANCH=None
BUG=chrome-os-partner:23796
TEST=With entire patch series, on both Samus and Glados:
- Verify 'version' EC console command is correct
- Verify 'flashrom -p ec -r read.bin' reads back EC image
- Verify software sync correctly flashes both EC and PD RW images

Signed-off-by: Shawn Nematbakhsh <shawnn@chromium.org>
Change-Id: I0e054ab4c939f9dcf54abee8e5ebd9b2e42fe9c4
Reviewed-on: https://chromium-review.googlesource.com/297804
Commit-Ready: Shawn N <shawnn@chromium.org>
Tested-by: Shawn N <shawnn@chromium.org>
Reviewed-by: Randall Spangler <rspangler@chromium.org>
2015-09-16 14:49:32 -07:00

914 lines
24 KiB
C

/* Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* Flash memory module for Chrome EC - common functions */
#include "common.h"
#include "console.h"
#include "flash.h"
#include "gpio.h"
#include "host_command.h"
#include "shared_mem.h"
#include "system.h"
#include "util.h"
#include "vboot_hash.h"
/*
* Contents of erased flash, as a 32-bit value. Most platforms erase flash
* bits to 1.
*/
#ifndef CONFIG_FLASH_ERASED_VALUE32
#define CONFIG_FLASH_ERASED_VALUE32 (-1U)
#endif
#ifdef CONFIG_FLASH_PSTATE
/*
* If flash isn't mapped to the EC's address space, it's probably SPI, and
* should be using SPI write protect, not PSTATE.
*/
#if !defined(CONFIG_INTERNAL_STORAGE) || !defined(CONFIG_MAPPED_STORAGE)
#error "PSTATE should only be used with internal mem-mapped flash."
#endif
#ifdef CONFIG_FLASH_PSTATE_BANK
/* Persistent protection state - emulates a SPI status register for flashrom */
struct persist_state {
uint8_t version; /* Version of this struct */
uint8_t flags; /* Lock flags (PERSIST_FLAG_*) */
uint8_t reserved[2]; /* Reserved; set 0 */
};
#define PERSIST_STATE_VERSION 2 /* Expected persist_state.version */
/* Flags for persist_state.flags */
/* Protect persist state and RO firmware at boot */
#define PERSIST_FLAG_PROTECT_RO 0x02
#else /* !CONFIG_FLASH_PSTATE_BANK */
/*
* Flags for write protect state depend on the erased value of flash. The
* locked value must be the same as the unlocked value with one or more bits
* transitioned away from the erased state. That way, it is possible to
* rewrite the data in-place to set the lock.
*
* STM32F0x can only write 0x0000 to a non-erased half-word, which means
* PSTATE_MAGIC_LOCKED isn't quite as pretty. That's ok; the only thing
* we actually need to detect is PSTATE_MAGIC_UNLOCKED, since that's the
* only value we'll ever alter, and the only value which causes us not to
* lock the flash at boot.
*/
#if (CONFIG_FLASH_ERASED_VALUE32 == -1U)
#define PSTATE_MAGIC_UNLOCKED 0x4f4e5057 /* "WPNO" */
#define PSTATE_MAGIC_LOCKED 0x00000000 /* "" */
#elif (CONFIG_FLASH_ERASED_VALUE32 == 0)
#define PSTATE_MAGIC_UNLOCKED 0x4f4e5057 /* "WPNO" */
#define PSTATE_MAGIC_LOCKED 0x5f5f5057 /* "WP__" */
#else
/* What kind of wacky flash doesn't erase all bits to 1 or 0? */
#error "PSTATE needs magic values for this flash architecture."
#endif
/*
* Rewriting the write protect flag in place currently requires a minimum write
* size <= the size of the flag value.
*
* We could work around this on chips with larger minimum write size by reading
* the write block containing the flag into RAM, changing it to the locked
* value, and then rewriting that block. But we should only pay for that
* complexity when we run across another chip which needs it.
*/
#if (CONFIG_FLASH_WRITE_SIZE > 4)
#error "Non-bank-based PSTATE requires flash write size <= 32 bits."
#endif
const uint32_t pstate_data __attribute__((section(".rodata.pstate"))) =
PSTATE_MAGIC_UNLOCKED;
#endif /* !CONFIG_FLASH_PSTATE_BANK */
#endif /* CONFIG_FLASH_PSTATE */
int flash_range_ok(int offset, int size_req, int align)
{
if (offset < 0 || size_req < 0 ||
offset + size_req > CONFIG_FLASH_SIZE ||
(offset | size_req) & (align - 1))
return 0; /* Invalid range */
return 1;
}
#ifdef CONFIG_MAPPED_STORAGE
/**
* Get the physical memory address of a flash offset
*
* This is used for direct flash access. We assume that the flash is
* contiguous from this start address through to the end of the usable
* flash.
*
* @param offset Flash offset to get address of
* @param dataptrp Returns pointer to memory address of flash offset
* @return pointer to flash memory offset, if ok, else NULL
*/
static const char *flash_physical_dataptr(int offset)
{
return (char *)((uintptr_t)CONFIG_MAPPED_STORAGE_BASE + offset);
}
int flash_dataptr(int offset, int size_req, int align, const char **ptrp)
{
if (!flash_range_ok(offset, size_req, align))
return -1; /* Invalid range */
if (ptrp)
*ptrp = flash_physical_dataptr(offset);
return CONFIG_FLASH_SIZE - offset;
}
#endif
#ifdef CONFIG_FLASH_PSTATE
#ifdef CONFIG_FLASH_PSTATE_BANK
/**
* Read and return persistent state flags (EC_FLASH_PROTECT_*)
*/
static uint32_t flash_read_pstate(void)
{
const struct persist_state *pstate =
(const struct persist_state *)
flash_physical_dataptr(PSTATE_OFFSET);
if ((pstate->version == PERSIST_STATE_VERSION) &&
(pstate->flags & PERSIST_FLAG_PROTECT_RO)) {
/* Lock flag is known to be set */
return EC_FLASH_PROTECT_RO_AT_BOOT;
} else {
#ifdef CONFIG_WP_ALWAYS
return PERSIST_FLAG_PROTECT_RO;
#else
return 0;
#endif
}
}
/**
* Write persistent state from pstate, erasing if necessary.
*
* @param flags New flash write protect flags to set in pstate.
* @return EC_SUCCESS, or nonzero if error.
*/
static int flash_write_pstate(uint32_t flags)
{
struct persist_state pstate;
int rv;
/* Only check the flags we write to pstate */
flags &= EC_FLASH_PROTECT_RO_AT_BOOT;
/* Check if pstate has actually changed */
if (flags == flash_read_pstate())
return EC_SUCCESS;
/* Erase pstate */
rv = flash_physical_erase(PSTATE_OFFSET, PSTATE_SIZE);
if (rv)
return rv;
/*
* Note that if we lose power in here, we'll lose the pstate contents.
* That's ok, because it's only possible to write the pstate before
* it's protected.
*/
/* Write a new pstate */
memset(&pstate, 0, sizeof(pstate));
pstate.version = PERSIST_STATE_VERSION;
if (flags & EC_FLASH_PROTECT_RO_AT_BOOT)
pstate.flags |= PERSIST_FLAG_PROTECT_RO;
return flash_physical_write(PSTATE_OFFSET, sizeof(pstate),
(const char *)&pstate);
}
#else /* !CONFIG_FLASH_PSTATE_BANK */
/**
* Return the address of the pstate data in EC-RO.
*/
static const uintptr_t get_pstate_addr(void)
{
uintptr_t addr = (uintptr_t)&pstate_data;
/* Always use the pstate data in RO, even if we're RW */
if (system_get_image_copy() == SYSTEM_IMAGE_RW)
addr += CONFIG_RO_MEM_OFF - CONFIG_RW_MEM_OFF;
return addr;
}
/**
* Read and return persistent state flags (EC_FLASH_PROTECT_*)
*/
static uint32_t flash_read_pstate(void)
{
/* Check for the unlocked magic value */
if (*(const uint32_t *)get_pstate_addr() == PSTATE_MAGIC_UNLOCKED)
return 0;
/* Anything else is locked */
return EC_FLASH_PROTECT_RO_AT_BOOT;
}
/**
* Write persistent state from pstate, erasing if necessary.
*
* @param flags New flash write protect flags to set in pstate.
* @return EC_SUCCESS, or nonzero if error.
*/
static int flash_write_pstate(uint32_t flags)
{
const uint32_t new_pstate = PSTATE_MAGIC_LOCKED;
/* Only check the flags we write to pstate */
flags &= EC_FLASH_PROTECT_RO_AT_BOOT;
/* Check if pstate has actually changed */
if (flags == flash_read_pstate())
return EC_SUCCESS;
/* We can only set the protect flag, not clear it */
if (!(flags & EC_FLASH_PROTECT_RO_AT_BOOT))
return EC_ERROR_ACCESS_DENIED;
/*
* Write a new pstate. We can overwrite the existing value, because
* we're only moving bits from the erased state to the unerased state.
*/
return flash_physical_write(get_pstate_addr() -
CONFIG_PROGRAM_MEMORY_BASE,
sizeof(new_pstate),
(const char *)&new_pstate);
}
#endif /* !CONFIG_FLASH_PSTATE_BANK */
#endif /* CONFIG_FLASH_PSTATE */
int flash_is_erased(uint32_t offset, int size)
{
const uint32_t *ptr;
#ifdef CONFIG_MAPPED_STORAGE
/* Use pointer directly to flash */
if (flash_dataptr(offset, size, sizeof(uint32_t),
(const char **)&ptr) < 0)
return 0;
for (size /= sizeof(uint32_t); size > 0; size--, ptr++)
if (*ptr != CONFIG_FLASH_ERASED_VALUE32)
return 0;
#else
/* Read flash a chunk at a time */
uint32_t buf[8];
int bsize;
while (size) {
bsize = MIN(size, sizeof(buf));
if (flash_read(offset, bsize, (char *)buf))
return 0;
size -= bsize;
offset += bsize;
ptr = buf;
for (bsize /= sizeof(uint32_t); bsize > 0; bsize--, ptr++)
if (*ptr != CONFIG_FLASH_ERASED_VALUE32)
return 0;
}
#endif
return 1;
}
int flash_read(int offset, int size, char *data)
{
#ifdef CONFIG_MAPPED_STORAGE
const char *src;
if (flash_dataptr(offset, size, 1, &src) < 0)
return EC_ERROR_INVAL;
memcpy(data, src, size);
return EC_SUCCESS;
#else
return flash_physical_read(offset, size, data);
#endif
}
int flash_write(int offset, int size, const char *data)
{
if (!flash_range_ok(offset, size, CONFIG_FLASH_WRITE_SIZE))
return EC_ERROR_INVAL; /* Invalid range */
#ifdef CONFIG_VBOOT_HASH
/*
* Abort hash calculations when flashrom flash updates
* are in progress.Otherwise invalidate the pre-computed hash,
* since it's likely to change after flash write
*/
if (vboot_hash_in_progress())
vboot_hash_abort();
else
vboot_hash_invalidate(offset, size);
#endif
return flash_physical_write(offset, size, data);
}
int flash_erase(int offset, int size)
{
if (!flash_range_ok(offset, size, CONFIG_FLASH_ERASE_SIZE))
return EC_ERROR_INVAL; /* Invalid range */
#ifdef CONFIG_VBOOT_HASH
/*
* Abort hash calculations when flashrom flash updates
* are in progress.Otherwise invalidate the pre-computed hash,
* since it's likely to be wrong after erase.
*/
if (vboot_hash_in_progress())
vboot_hash_abort();
else
vboot_hash_invalidate(offset, size);
#endif
return flash_physical_erase(offset, size);
}
int flash_protect_at_boot(enum flash_wp_range range)
{
#ifdef CONFIG_FLASH_PSTATE
uint32_t new_flags =
(range != FLASH_WP_NONE) ? EC_FLASH_PROTECT_RO_AT_BOOT : 0;
/* Read the current persist state from flash */
if (flash_read_pstate() != new_flags) {
/* Need to update pstate */
int rv;
#ifdef CONFIG_FLASH_PSTATE_BANK
/* Fail if write protect block is already locked */
if (flash_physical_get_protect(PSTATE_BANK))
return EC_ERROR_ACCESS_DENIED;
#endif
/* Write the desired flags */
rv = flash_write_pstate(new_flags);
if (rv)
return rv;
}
#ifdef CONFIG_FLASH_PROTECT_NEXT_BOOT
/*
* Try updating at-boot protection state, if on a platform where write
* protection only changes after a reboot. Otherwise we wouldn't
* update it until after the next reboot, and we'd need to reboot
* again. Ignore errors, because the protection registers might
* already be locked this boot, and we'll still apply the correct state
* again on the next boot.
*
* This assumes PSTATE immediately follows RO, which it does on
* all STM32 platforms (which are the only ones with this config).
*/
flash_physical_protect_at_boot(range);
#endif
return EC_SUCCESS;
#else
return flash_physical_protect_at_boot(range);
#endif
}
uint32_t flash_get_protect(void)
{
uint32_t flags = 0;
int not_protected[2] = {0};
int i;
/* Read write protect GPIO */
#ifdef CONFIG_WP_ALWAYS
flags |= EC_FLASH_PROTECT_GPIO_ASSERTED;
#elif defined(CONFIG_WP_ACTIVE_HIGH)
if (gpio_get_level(GPIO_WP))
flags |= EC_FLASH_PROTECT_GPIO_ASSERTED;
#else
if (!gpio_get_level(GPIO_WP_L))
flags |= EC_FLASH_PROTECT_GPIO_ASSERTED;
#endif
#ifdef CONFIG_FLASH_PSTATE
/* Read persistent state of RO-at-boot flag */
flags |= flash_read_pstate();
#endif
/* Scan flash protection */
for (i = 0; i < PHYSICAL_BANKS; i++) {
/* Is this bank part of RO */
int is_ro = (i >= WP_BANK_OFFSET &&
i < WP_BANK_OFFSET + WP_BANK_COUNT) ? 1 : 0;
int bank_flag = (is_ro ? EC_FLASH_PROTECT_RO_NOW :
EC_FLASH_PROTECT_ALL_NOW);
if (flash_physical_get_protect(i)) {
/* At least one bank in the region is protected */
flags |= bank_flag;
if (not_protected[is_ro])
flags |= EC_FLASH_PROTECT_ERROR_INCONSISTENT;
} else {
/* At least one bank in the region is NOT protected */
not_protected[is_ro] = 1;
if (flags & bank_flag)
flags |= EC_FLASH_PROTECT_ERROR_INCONSISTENT;
}
}
/*
* If the RW banks are protected but the RO banks aren't, that's
* inconsistent.
*
* Note that we check this before adding in the physical flags below,
* since some chips can also protect ALL_NOW for the current boot by
* locking up the flash program-erase registers.
*/
if ((flags & EC_FLASH_PROTECT_ALL_NOW) &&
!(flags & EC_FLASH_PROTECT_RO_NOW))
flags |= EC_FLASH_PROTECT_ERROR_INCONSISTENT;
/* Add in flags from physical layer */
return flags | flash_physical_get_protect_flags();
}
int flash_set_protect(uint32_t mask, uint32_t flags)
{
int retval = EC_SUCCESS;
int rv;
enum flash_wp_range range = FLASH_WP_NONE;
int need_set_protect = 0;
/*
* Process flags we can set. Track the most recent error, but process
* all flags before returning.
*/
/*
* AT_BOOT flags are trickier than NOW flags, as they can be set
* when HW write protection is disabled and can be unset without
* a reboot.
*
* If we are only setting/clearing RO_AT_BOOT, things are simple.
* Setting ALL_AT_BOOT is processed only if HW write protection is
* enabled and RO_AT_BOOT is set, so it's also simple.
*
* The most tricky one is when we want to clear ALL_AT_BOOT. We need
* to determine whether to clear protection for the entire flash or
* leave RO protected. There are two cases that we want to keep RO
* protected:
* 1. RO_AT_BOOT was already set before flash_set_protect() is
* called.
* 2. RO_AT_BOOT was not set, but it's requested to be set by
* the caller of flash_set_protect().
*/
if (mask & EC_FLASH_PROTECT_RO_AT_BOOT) {
range = (flags & EC_FLASH_PROTECT_RO_AT_BOOT) ?
FLASH_WP_RO : FLASH_WP_NONE;
need_set_protect = 1;
}
if ((mask & EC_FLASH_PROTECT_ALL_AT_BOOT) &&
!(flags & EC_FLASH_PROTECT_ALL_AT_BOOT)) {
if (flash_get_protect() & EC_FLASH_PROTECT_RO_AT_BOOT)
range = FLASH_WP_RO;
need_set_protect = 1;
}
if (need_set_protect) {
rv = flash_protect_at_boot(range);
if (rv)
retval = rv;
}
/*
* All subsequent flags only work if write protect is enabled (that is,
* hardware WP flag) *and* RO is protected at boot (software WP flag).
*/
if ((~flash_get_protect()) & (EC_FLASH_PROTECT_GPIO_ASSERTED |
EC_FLASH_PROTECT_RO_AT_BOOT))
return retval;
if ((mask & EC_FLASH_PROTECT_ALL_AT_BOOT) &&
(flags & EC_FLASH_PROTECT_ALL_AT_BOOT)) {
rv = flash_protect_at_boot(FLASH_WP_ALL);
if (rv)
retval = rv;
}
if ((mask & EC_FLASH_PROTECT_RO_NOW) &&
(flags & EC_FLASH_PROTECT_RO_NOW)) {
rv = flash_physical_protect_now(0);
if (rv)
retval = rv;
}
if ((mask & EC_FLASH_PROTECT_ALL_NOW) &&
(flags & EC_FLASH_PROTECT_ALL_NOW)) {
rv = flash_physical_protect_now(1);
if (rv)
retval = rv;
}
return retval;
}
/*****************************************************************************/
/* Console commands */
static int command_flash_info(int argc, char **argv)
{
int i;
ccprintf("Physical:%4d KB\n", CONFIG_FLASH_PHYSICAL_SIZE / 1024);
ccprintf("Usable: %4d KB\n", CONFIG_FLASH_SIZE / 1024);
ccprintf("Write: %4d B (ideal %d B)\n", CONFIG_FLASH_WRITE_SIZE,
CONFIG_FLASH_WRITE_IDEAL_SIZE);
ccprintf("Erase: %4d B (to %d-bits)\n", CONFIG_FLASH_ERASE_SIZE,
CONFIG_FLASH_ERASED_VALUE32 ? 1 : 0);
ccprintf("Protect: %4d B\n", CONFIG_FLASH_BANK_SIZE);
i = flash_get_protect();
ccprintf("Flags: ");
if (i & EC_FLASH_PROTECT_GPIO_ASSERTED)
ccputs(" wp_gpio_asserted");
if (i & EC_FLASH_PROTECT_RO_AT_BOOT)
ccputs(" ro_at_boot");
if (i & EC_FLASH_PROTECT_ALL_AT_BOOT)
ccputs(" all_at_boot");
if (i & EC_FLASH_PROTECT_RO_NOW)
ccputs(" ro_now");
if (i & EC_FLASH_PROTECT_ALL_NOW)
ccputs(" all_now");
if (i & EC_FLASH_PROTECT_ERROR_STUCK)
ccputs(" STUCK");
if (i & EC_FLASH_PROTECT_ERROR_INCONSISTENT)
ccputs(" INCONSISTENT");
ccputs("\n");
ccputs("Protected now:");
for (i = 0; i < CONFIG_FLASH_PHYSICAL_SIZE / CONFIG_FLASH_BANK_SIZE;
i++) {
if (!(i & 31))
ccputs("\n ");
else if (!(i & 7))
ccputs(" ");
ccputs(flash_physical_get_protect(i) ? "Y" : ".");
}
ccputs("\n");
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(flashinfo, command_flash_info,
NULL,
"Print flash info",
NULL);
#ifdef CONFIG_CMD_FLASH
static int command_flash_erase(int argc, char **argv)
{
int offset = -1;
int size = CONFIG_FLASH_ERASE_SIZE;
int rv;
if (flash_get_protect() & EC_FLASH_PROTECT_ALL_NOW)
return EC_ERROR_ACCESS_DENIED;
rv = parse_offset_size(argc, argv, 1, &offset, &size);
if (rv)
return rv;
ccprintf("Erasing %d bytes at 0x%x...\n", size, offset, offset);
return flash_erase(offset, size);
}
DECLARE_CONSOLE_COMMAND(flasherase, command_flash_erase,
"offset [size]",
"Erase flash",
NULL);
static int command_flash_write(int argc, char **argv)
{
int offset = -1;
int size = CONFIG_FLASH_ERASE_SIZE;
int rv;
char *data;
int i;
if (flash_get_protect() & EC_FLASH_PROTECT_ALL_NOW)
return EC_ERROR_ACCESS_DENIED;
rv = parse_offset_size(argc, argv, 1, &offset, &size);
if (rv)
return rv;
if (size > shared_mem_size())
size = shared_mem_size();
/* Acquire the shared memory buffer */
rv = shared_mem_acquire(size, &data);
if (rv) {
ccputs("Can't get shared mem\n");
return rv;
}
/* Fill the data buffer with a pattern */
for (i = 0; i < size; i++)
data[i] = i;
ccprintf("Writing %d bytes to 0x%x...\n",
size, offset, offset);
rv = flash_write(offset, size, data);
/* Free the buffer */
shared_mem_release(data);
return rv;
}
DECLARE_CONSOLE_COMMAND(flashwrite, command_flash_write,
"offset [size]",
"Write pattern to flash",
NULL);
static int command_flash_read(int argc, char **argv)
{
int offset = -1;
int size = 256;
int rv;
char *data;
int i;
rv = parse_offset_size(argc, argv, 1, &offset, &size);
if (rv)
return rv;
if (size > shared_mem_size())
size = shared_mem_size();
/* Acquire the shared memory buffer */
rv = shared_mem_acquire(size, &data);
if (rv) {
ccputs("Can't get shared mem\n");
return rv;
}
/* Read the data */
if (flash_read(offset, size, data)) {
shared_mem_release(data);
return EC_ERROR_INVAL;
}
/* Dump it */
for (i = 0; i < size; i++) {
if ((offset + i) % 16) {
ccprintf(" %02x", data[i]);
} else {
ccprintf("\n%08x: %02x", offset + i, data[i]);
cflush();
}
}
ccprintf("\n");
/* Free the buffer */
shared_mem_release(data);
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(flashread, command_flash_read,
"offset [size]",
"Read flash",
NULL);
#endif
static int command_flash_wp(int argc, char **argv)
{
if (argc < 2)
return EC_ERROR_PARAM_COUNT;
if (!strcasecmp(argv[1], "enable"))
return flash_set_protect(EC_FLASH_PROTECT_RO_AT_BOOT, -1);
else if (!strcasecmp(argv[1], "disable"))
return flash_set_protect(EC_FLASH_PROTECT_RO_AT_BOOT, 0);
else if (!strcasecmp(argv[1], "now"))
return flash_set_protect(EC_FLASH_PROTECT_ALL_NOW, -1);
else if (!strcasecmp(argv[1], "rw"))
return flash_set_protect(EC_FLASH_PROTECT_ALL_AT_BOOT, -1);
else if (!strcasecmp(argv[1], "norw"))
return flash_set_protect(EC_FLASH_PROTECT_ALL_AT_BOOT, 0);
else
return EC_ERROR_PARAM1;
}
DECLARE_CONSOLE_COMMAND(flashwp, command_flash_wp,
"<enable | disable | now | rw | norw>",
"Modify flash write protect",
NULL);
/*****************************************************************************/
/* Host commands */
static int flash_command_get_info(struct host_cmd_handler_args *args)
{
struct ec_response_flash_info_1 *r = args->response;
r->flash_size = CONFIG_FLASH_SIZE;
r->write_block_size = CONFIG_FLASH_WRITE_SIZE;
r->erase_block_size = CONFIG_FLASH_ERASE_SIZE;
r->protect_block_size = CONFIG_FLASH_BANK_SIZE;
if (args->version == 0) {
/* Only version 0 fields returned */
args->response_size = sizeof(struct ec_response_flash_info);
} else {
/* Fill in full version 1 struct */
/*
* Compute the ideal amount of data for the host to send us,
* based on the maximum response size and the ideal write size.
*/
r->write_ideal_size =
(args->response_max -
sizeof(struct ec_params_flash_write)) &
~(CONFIG_FLASH_WRITE_IDEAL_SIZE - 1);
/*
* If we can't get at least one ideal block, then just want
* as high a multiple of the minimum write size as possible.
*/
if (!r->write_ideal_size)
r->write_ideal_size =
(args->response_max -
sizeof(struct ec_params_flash_write)) &
~(CONFIG_FLASH_WRITE_SIZE - 1);
r->flags = 0;
#if (CONFIG_FLASH_ERASED_VALUE32 == 0)
r->flags |= EC_FLASH_INFO_ERASE_TO_0;
#endif
args->response_size = sizeof(*r);
}
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_FLASH_INFO,
flash_command_get_info,
EC_VER_MASK(0) | EC_VER_MASK(1));
static int flash_command_read(struct host_cmd_handler_args *args)
{
const struct ec_params_flash_read *p = args->params;
if (p->size > args->response_max)
return EC_RES_OVERFLOW;
if (flash_read(p->offset, p->size, args->response))
return EC_RES_ERROR;
args->response_size = p->size;
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_FLASH_READ,
flash_command_read,
EC_VER_MASK(0));
/**
* Flash write command
*
* Version 0 and 1 are equivalent from the EC-side; the only difference is
* that the host can only send 64 bytes of data at a time in version 0.
*/
static int flash_command_write(struct host_cmd_handler_args *args)
{
const struct ec_params_flash_write *p = args->params;
if (flash_get_protect() & EC_FLASH_PROTECT_ALL_NOW)
return EC_RES_ACCESS_DENIED;
if (p->size + sizeof(*p) > args->params_size)
return EC_RES_INVALID_PARAM;
if (system_unsafe_to_overwrite(p->offset, p->size))
return EC_RES_ACCESS_DENIED;
if (flash_write(p->offset, p->size, (const uint8_t *)(p + 1)))
return EC_RES_ERROR;
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_FLASH_WRITE,
flash_command_write,
EC_VER_MASK(0) | EC_VER_MASK(EC_VER_FLASH_WRITE));
static int flash_command_erase(struct host_cmd_handler_args *args)
{
const struct ec_params_flash_erase *p = args->params;
if (flash_get_protect() & EC_FLASH_PROTECT_ALL_NOW)
return EC_RES_ACCESS_DENIED;
if (system_unsafe_to_overwrite(p->offset, p->size))
return EC_RES_ACCESS_DENIED;
/* Indicate that we might be a while */
#if defined(HAS_TASK_HOSTCMD) && defined(CONFIG_HOST_COMMAND_STATUS)
args->result = EC_RES_IN_PROGRESS;
host_send_response(args);
#endif
if (flash_erase(p->offset, p->size))
return EC_RES_ERROR;
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_FLASH_ERASE,
flash_command_erase,
EC_VER_MASK(0));
static int flash_command_protect(struct host_cmd_handler_args *args)
{
const struct ec_params_flash_protect *p = args->params;
struct ec_response_flash_protect *r = args->response;
/*
* Handle requesting new flags. Note that we ignore the return code
* from flash_set_protect(), since errors will be visible to the caller
* via the flags in the response. (If we returned error, the caller
* wouldn't get the response.)
*/
if (p->mask)
flash_set_protect(p->mask, p->flags);
/*
* Retrieve the current flags. The caller can use this to determine
* which of the requested flags could be set. This is cleaner than
* simply returning error, because it provides information to the
* caller about the actual result.
*/
r->flags = flash_get_protect();
/* Indicate which flags are valid on this platform */
r->valid_flags =
EC_FLASH_PROTECT_GPIO_ASSERTED |
EC_FLASH_PROTECT_ERROR_STUCK |
EC_FLASH_PROTECT_ERROR_INCONSISTENT |
flash_physical_get_valid_flags();
r->writable_flags = flash_physical_get_writable_flags(r->flags);
args->response_size = sizeof(*r);
return EC_RES_SUCCESS;
}
/*
* TODO(crbug.com/239197) : Adding both versions to the version mask is a
* temporary workaround for a problem in the cros_ec driver. Drop
* EC_VER_MASK(0) once cros_ec driver can send the correct version.
*/
DECLARE_HOST_COMMAND(EC_CMD_FLASH_PROTECT,
flash_command_protect,
EC_VER_MASK(0) | EC_VER_MASK(1));
static int flash_command_region_info(struct host_cmd_handler_args *args)
{
const struct ec_params_flash_region_info *p = args->params;
struct ec_response_flash_region_info *r = args->response;
switch (p->region) {
case EC_FLASH_REGION_RO:
r->offset = CONFIG_RO_STORAGE_OFF;
r->size = CONFIG_RO_SIZE;
break;
case EC_FLASH_REGION_RW:
r->offset = CONFIG_RW_STORAGE_OFF;
r->size = CONFIG_RW_SIZE;
break;
case EC_FLASH_REGION_WP_RO:
r->offset = CONFIG_WP_OFF;
r->size = CONFIG_WP_SIZE;
break;
default:
return EC_RES_INVALID_PARAM;
}
args->response_size = sizeof(*r);
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_FLASH_REGION_INFO,
flash_command_region_info,
EC_VER_MASK(EC_VER_FLASH_REGION_INFO));