Files
OpenCellular/cgpt/cgpt_common.c
Louis Yung-Chieh Lo 57cdad33d6 (modify and resend) Trigger sync right after writing.
This can trigger the sync mechanism earlier so that the kernel has enough
time to schedule a real disk sync before system reboots.

We sent this in CL 41269, however it is reverted because the sync() and
syncfs() make test cases timeout (tons of disk access). So we only sync
file itself in this CL and leave the whoe system sync outside cgpt.

BUG=chromium-os:35992
TEST=make && make runtests ; and trybot
BRANCH=none

Change-Id: I9c6b602220131f1f011e7865788a122d4c379e73
Reviewed-on: https://gerrit.chromium.org/gerrit/41345
Reviewed-by: Hung-Te Lin <hungte@chromium.org>
Commit-Queue: Yung-Chieh Lo <yjlou@chromium.org>
Tested-by: Yung-Chieh Lo <yjlou@chromium.org>
Reviewed-by: Bill Richardson <wfrichar@chromium.org>
2013-01-22 11:48:43 -08:00

888 lines
29 KiB
C

/* Copyright (c) 2010 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*
* Utility for ChromeOS-specific GPT partitions, Please see corresponding .c
* files for more details.
*/
#include "cgpt.h"
#include <errno.h>
#include <fcntl.h>
#include <getopt.h>
#include <stdarg.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/mount.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include "cgptlib_internal.h"
#include "crc32.h"
void Error(const char *format, ...) {
va_list ap;
va_start(ap, format);
fprintf(stderr, "ERROR: %s %s: ", progname, command);
vfprintf(stderr, format, ap);
va_end(ap);
}
int CheckValid(const struct drive *drive) {
if ((drive->gpt.valid_headers != MASK_BOTH) ||
(drive->gpt.valid_entries != MASK_BOTH)) {
fprintf(stderr, "\nWARNING: one of the GPT header/entries is invalid, "
"please run '%s repair'\n", progname);
return CGPT_FAILED;
}
return CGPT_OK;
}
/* Loads sectors from 'fd'.
* *buf is pointed to an allocated memory when returned, and should be
* freed by cgpt_close().
*
* fd -- file descriptot.
* buf -- pointer to buffer pointer
* sector -- offset of starting sector (in sectors)
* sector_bytes -- bytes per sector
* sector_count -- number of sectors to load
*
* Returns CGPT_OK for successful. Aborts if any error occurs.
*/
static int Load(const int fd, uint8_t **buf,
const uint64_t sector,
const uint64_t sector_bytes,
const uint64_t sector_count) {
int count; /* byte count to read */
int nread;
require(buf);
if (!sector_count || !sector_bytes) {
Error("%s() failed at line %d: sector_count=%d, sector_bytes=%d\n",
__FUNCTION__, __LINE__, sector_count, sector_bytes);
return CGPT_FAILED;
}
/* Make sure that sector_bytes * sector_count doesn't roll over. */
if (sector_bytes > (UINT64_MAX / sector_count)) {
Error("%s() failed at line %d: sector_count=%d, sector_bytes=%d\n",
__FUNCTION__, __LINE__, sector_count, sector_bytes);
return CGPT_FAILED;
}
count = sector_bytes * sector_count;
*buf = malloc(count);
require(*buf);
if (-1 == lseek(fd, sector * sector_bytes, SEEK_SET)) {
Error("Can't lseek: %s\n", strerror(errno));
goto error_free;
}
nread = read(fd, *buf, count);
if (nread < count) {
Error("Can't read enough: %d, not %d\n", nread, count);
goto error_free;
}
return CGPT_OK;
error_free:
free(*buf);
*buf = 0;
return CGPT_FAILED;
}
int ReadPMBR(struct drive *drive) {
if (-1 == lseek(drive->fd, 0, SEEK_SET))
return CGPT_FAILED;
int nread = read(drive->fd, &drive->pmbr, sizeof(struct pmbr));
if (nread != sizeof(struct pmbr))
return CGPT_FAILED;
return CGPT_OK;
}
int WritePMBR(struct drive *drive) {
if (-1 == lseek(drive->fd, 0, SEEK_SET))
return CGPT_FAILED;
int nwrote = write(drive->fd, &drive->pmbr, sizeof(struct pmbr));
if (nwrote != sizeof(struct pmbr))
return CGPT_FAILED;
return CGPT_OK;
}
/* Saves sectors to 'fd'.
*
* fd -- file descriptot.
* buf -- pointer to buffer
* sector -- starting sector offset
* sector_bytes -- bytes per sector
* sector_count -- number of sector to save
*
* Returns CGPT_OK for successful, CGPT_FAILED for failed.
*/
static int Save(const int fd, const uint8_t *buf,
const uint64_t sector,
const uint64_t sector_bytes,
const uint64_t sector_count) {
int count; /* byte count to write */
int nwrote;
require(buf);
count = sector_bytes * sector_count;
if (-1 == lseek(fd, sector * sector_bytes, SEEK_SET))
return CGPT_FAILED;
nwrote = write(fd, buf, count);
if (nwrote < count)
return CGPT_FAILED;
return CGPT_OK;
}
// Opens a block device or file, loads raw GPT data from it.
// mode should be O_RDONLY or O_RDWR
//
// Returns CGPT_FAILED if any error happens.
// Returns CGPT_OK if success and information are stored in 'drive'. */
int DriveOpen(const char *drive_path, struct drive *drive, int mode) {
struct stat stat;
require(drive_path);
require(drive);
// Clear struct for proper error handling.
memset(drive, 0, sizeof(struct drive));
drive->fd = open(drive_path, mode | O_LARGEFILE | O_NOFOLLOW);
if (drive->fd == -1) {
Error("Can't open %s: %s\n", drive_path, strerror(errno));
return CGPT_FAILED;
}
if (fstat(drive->fd, &stat) == -1) {
Error("Can't fstat %s: %s\n", drive_path, strerror(errno));
goto error_close;
}
if ((stat.st_mode & S_IFMT) != S_IFREG) {
if (ioctl(drive->fd, BLKGETSIZE64, &drive->size) < 0) {
Error("Can't read drive size from %s: %s\n", drive_path, strerror(errno));
goto error_close;
}
if (ioctl(drive->fd, BLKSSZGET, &drive->gpt.sector_bytes) < 0) {
Error("Can't read sector size from %s: %s\n",
drive_path, strerror(errno));
goto error_close;
}
} else {
drive->gpt.sector_bytes = 512; /* bytes */
drive->size = stat.st_size;
}
if (drive->size % drive->gpt.sector_bytes) {
Error("Media size (%llu) is not a multiple of sector size(%d)\n",
(long long unsigned int)drive->size, drive->gpt.sector_bytes);
goto error_close;
}
drive->gpt.drive_sectors = drive->size / drive->gpt.sector_bytes;
// Read the data.
if (CGPT_OK != Load(drive->fd, &drive->gpt.primary_header,
GPT_PMBR_SECTOR,
drive->gpt.sector_bytes, GPT_HEADER_SECTOR)) {
goto error_close;
}
if (CGPT_OK != Load(drive->fd, &drive->gpt.secondary_header,
drive->gpt.drive_sectors - GPT_PMBR_SECTOR,
drive->gpt.sector_bytes, GPT_HEADER_SECTOR)) {
goto error_close;
}
if (CGPT_OK != Load(drive->fd, &drive->gpt.primary_entries,
GPT_PMBR_SECTOR + GPT_HEADER_SECTOR,
drive->gpt.sector_bytes, GPT_ENTRIES_SECTORS)) {
goto error_close;
}
if (CGPT_OK != Load(drive->fd, &drive->gpt.secondary_entries,
drive->gpt.drive_sectors - GPT_HEADER_SECTOR
- GPT_ENTRIES_SECTORS,
drive->gpt.sector_bytes, GPT_ENTRIES_SECTORS)) {
goto error_close;
}
// We just load the data. Caller must validate it.
return CGPT_OK;
error_close:
(void) DriveClose(drive, 0);
return CGPT_FAILED;
}
int DriveClose(struct drive *drive, int update_as_needed) {
int errors = 0;
if (update_as_needed) {
if (drive->gpt.modified & GPT_MODIFIED_HEADER1) {
if (CGPT_OK != Save(drive->fd, drive->gpt.primary_header,
GPT_PMBR_SECTOR,
drive->gpt.sector_bytes, GPT_HEADER_SECTOR)) {
errors++;
Error("Cannot write primary header: %s\n", strerror(errno));
}
}
if (drive->gpt.modified & GPT_MODIFIED_HEADER2) {
if(CGPT_OK != Save(drive->fd, drive->gpt.secondary_header,
drive->gpt.drive_sectors - GPT_PMBR_SECTOR,
drive->gpt.sector_bytes, GPT_HEADER_SECTOR)) {
errors++;
Error("Cannot write secondary header: %s\n", strerror(errno));
}
}
if (drive->gpt.modified & GPT_MODIFIED_ENTRIES1) {
if (CGPT_OK != Save(drive->fd, drive->gpt.primary_entries,
GPT_PMBR_SECTOR + GPT_HEADER_SECTOR,
drive->gpt.sector_bytes, GPT_ENTRIES_SECTORS)) {
errors++;
Error("Cannot write primary entries: %s\n", strerror(errno));
}
}
if (drive->gpt.modified & GPT_MODIFIED_ENTRIES2) {
if (CGPT_OK != Save(drive->fd, drive->gpt.secondary_entries,
drive->gpt.drive_sectors - GPT_HEADER_SECTOR
- GPT_ENTRIES_SECTORS,
drive->gpt.sector_bytes, GPT_ENTRIES_SECTORS)) {
errors++;
Error("Cannot write secondary entries: %s\n", strerror(errno));
}
}
}
// Sync early! Only sync file descriptor here, and leave the whole system sync
// outside cgpt because whole system sync would trigger tons of disk accesses
// and timeout tests.
fsync(drive->fd);
close(drive->fd);
if (drive->gpt.primary_header)
free(drive->gpt.primary_header);
drive->gpt.primary_header = 0;
if (drive->gpt.primary_entries)
free(drive->gpt.primary_entries);
drive->gpt.primary_entries = 0;
if (drive->gpt.secondary_header)
free(drive->gpt.secondary_header);
drive->gpt.secondary_header = 0;
if (drive->gpt.secondary_entries)
free(drive->gpt.secondary_entries);
drive->gpt.secondary_entries = 0;
return errors ? CGPT_FAILED : CGPT_OK;
}
/* GUID conversion functions. Accepted format:
*
* "C12A7328-F81F-11D2-BA4B-00A0C93EC93B"
*
* Returns CGPT_OK if parsing is successful; otherwise CGPT_FAILED.
*/
int StrToGuid(const char *str, Guid *guid) {
uint32_t time_low;
uint16_t time_mid;
uint16_t time_high_and_version;
unsigned int chunk[11];
if (11 != sscanf(str, "%08X-%04X-%04X-%02X%02X-%02X%02X%02X%02X%02X%02X",
chunk+0,
chunk+1,
chunk+2,
chunk+3,
chunk+4,
chunk+5,
chunk+6,
chunk+7,
chunk+8,
chunk+9,
chunk+10)) {
printf("FAILED\n");
return CGPT_FAILED;
}
time_low = chunk[0] & 0xffffffff;
time_mid = chunk[1] & 0xffff;
time_high_and_version = chunk[2] & 0xffff;
guid->u.Uuid.time_low = htole32(time_low);
guid->u.Uuid.time_mid = htole16(time_mid);
guid->u.Uuid.time_high_and_version = htole16(time_high_and_version);
guid->u.Uuid.clock_seq_high_and_reserved = chunk[3] & 0xff;
guid->u.Uuid.clock_seq_low = chunk[4] & 0xff;
guid->u.Uuid.node[0] = chunk[5] & 0xff;
guid->u.Uuid.node[1] = chunk[6] & 0xff;
guid->u.Uuid.node[2] = chunk[7] & 0xff;
guid->u.Uuid.node[3] = chunk[8] & 0xff;
guid->u.Uuid.node[4] = chunk[9] & 0xff;
guid->u.Uuid.node[5] = chunk[10] & 0xff;
return CGPT_OK;
}
void GuidToStr(const Guid *guid, char *str, unsigned int buflen) {
require(buflen >= GUID_STRLEN);
require(snprintf(str, buflen,
"%08X-%04X-%04X-%02X%02X-%02X%02X%02X%02X%02X%02X",
le32toh(guid->u.Uuid.time_low),
le16toh(guid->u.Uuid.time_mid),
le16toh(guid->u.Uuid.time_high_and_version),
guid->u.Uuid.clock_seq_high_and_reserved,
guid->u.Uuid.clock_seq_low,
guid->u.Uuid.node[0], guid->u.Uuid.node[1],
guid->u.Uuid.node[2], guid->u.Uuid.node[3],
guid->u.Uuid.node[4], guid->u.Uuid.node[5]) == GUID_STRLEN-1);
}
/* Convert possibly unterminated UTF16 string to UTF8.
* Caller must prepare enough space for UTF8, which could be up to
* twice the byte length of UTF16 string plus the terminating '\0'.
* See the following table for encoding lengths.
*
* Code point UTF16 UTF8
* 0x0000-0x007F 2 bytes 1 byte
* 0x0080-0x07FF 2 bytes 2 bytes
* 0x0800-0xFFFF 2 bytes 3 bytes
* 0x10000-0x10FFFF 4 bytes 4 bytes
*
* This function uses a simple state meachine to convert UTF-16 char(s) to
* a code point. Once a code point is parsed out, the state machine throws
* out sequencial UTF-8 chars in one time.
*
* Return: CGPT_OK --- all character are converted successfully.
* CGPT_FAILED --- convert error, i.e. output buffer is too short.
*/
int UTF16ToUTF8(const uint16_t *utf16, unsigned int maxinput,
uint8_t *utf8, unsigned int maxoutput)
{
size_t s16idx, s8idx;
uint32_t code_point = 0;
int code_point_ready = 1; // code point is ready to output.
int retval = CGPT_OK;
if (!utf16 || !maxinput || !utf8 || !maxoutput)
return CGPT_FAILED;
maxoutput--; /* plan for termination now */
for (s16idx = s8idx = 0;
s16idx < maxinput && utf16[s16idx] && maxoutput;
s16idx++) {
uint16_t codeunit = le16toh(utf16[s16idx]);
if (code_point_ready) {
if (codeunit >= 0xD800 && codeunit <= 0xDBFF) {
/* high surrogate, need the low surrogate. */
code_point_ready = 0;
code_point = (codeunit & 0x03FF) + 0x0040;
} else {
/* BMP char, output it. */
code_point = codeunit;
}
} else {
/* expect the low surrogate */
if (codeunit >= 0xDC00 && codeunit <= 0xDFFF) {
code_point = (code_point << 10) | (codeunit & 0x03FF);
code_point_ready = 1;
} else {
/* the second code unit is NOT the low surrogate. Unexpected. */
code_point_ready = 0;
retval = CGPT_FAILED;
break;
}
}
/* If UTF code point is ready, output it. */
if (code_point_ready) {
require(code_point <= 0x10FFFF);
if (code_point <= 0x7F && maxoutput >= 1) {
maxoutput -= 1;
utf8[s8idx++] = code_point & 0x7F;
} else if (code_point <= 0x7FF && maxoutput >= 2) {
maxoutput -= 2;
utf8[s8idx++] = 0xC0 | (code_point >> 6);
utf8[s8idx++] = 0x80 | (code_point & 0x3F);
} else if (code_point <= 0xFFFF && maxoutput >= 3) {
maxoutput -= 3;
utf8[s8idx++] = 0xE0 | (code_point >> 12);
utf8[s8idx++] = 0x80 | ((code_point >> 6) & 0x3F);
utf8[s8idx++] = 0x80 | (code_point & 0x3F);
} else if (code_point <= 0x10FFFF && maxoutput >= 4) {
maxoutput -= 4;
utf8[s8idx++] = 0xF0 | (code_point >> 18);
utf8[s8idx++] = 0x80 | ((code_point >> 12) & 0x3F);
utf8[s8idx++] = 0x80 | ((code_point >> 6) & 0x3F);
utf8[s8idx++] = 0x80 | (code_point & 0x3F);
} else {
/* buffer underrun */
retval = CGPT_FAILED;
break;
}
}
}
utf8[s8idx++] = 0;
return retval;
}
/* Convert UTF8 string to UTF16. The UTF8 string must be null-terminated.
* Caller must prepare enough space for UTF16, including a terminating 0x0000.
* See the following table for encoding lengths. In any case, the caller
* just needs to prepare the byte length of UTF8 plus the terminating 0x0000.
*
* Code point UTF16 UTF8
* 0x0000-0x007F 2 bytes 1 byte
* 0x0080-0x07FF 2 bytes 2 bytes
* 0x0800-0xFFFF 2 bytes 3 bytes
* 0x10000-0x10FFFF 4 bytes 4 bytes
*
* This function converts UTF8 chars to a code point first. Then, convrts it
* to UTF16 code unit(s).
*
* Return: CGPT_OK --- all character are converted successfully.
* CGPT_FAILED --- convert error, i.e. output buffer is too short.
*/
int UTF8ToUTF16(const uint8_t *utf8, uint16_t *utf16, unsigned int maxoutput)
{
size_t s16idx, s8idx;
uint32_t code_point = 0;
unsigned int expected_units = 1;
unsigned int decoded_units = 1;
int retval = CGPT_OK;
if (!utf8 || !utf16 || !maxoutput)
return CGPT_FAILED;
maxoutput--; /* plan for termination */
for (s8idx = s16idx = 0;
utf8[s8idx] && maxoutput;
s8idx++) {
uint8_t code_unit;
code_unit = utf8[s8idx];
if (expected_units != decoded_units) {
/* Trailing bytes of multi-byte character */
if ((code_unit & 0xC0) == 0x80) {
code_point = (code_point << 6) | (code_unit & 0x3F);
++decoded_units;
} else {
/* Unexpected code unit. */
retval = CGPT_FAILED;
break;
}
} else {
/* parsing a new code point. */
decoded_units = 1;
if (code_unit <= 0x7F) {
code_point = code_unit;
expected_units = 1;
} else if (code_unit <= 0xBF) {
/* 0x80-0xBF must NOT be the heading byte unit of a new code point. */
retval = CGPT_FAILED;
break;
} else if (code_unit >= 0xC2 && code_unit <= 0xDF) {
code_point = code_unit & 0x1F;
expected_units = 2;
} else if (code_unit >= 0xE0 && code_unit <= 0xEF) {
code_point = code_unit & 0x0F;
expected_units = 3;
} else if (code_unit >= 0xF0 && code_unit <= 0xF4) {
code_point = code_unit & 0x07;
expected_units = 4;
} else {
/* illegal code unit: 0xC0-0xC1, 0xF5-0xFF */
retval = CGPT_FAILED;
break;
}
}
/* If no more unit is needed, output the UTF16 unit(s). */
if ((retval == CGPT_OK) &&
(expected_units == decoded_units)) {
/* Check if the encoding is the shortest possible UTF-8 sequence. */
switch (expected_units) {
case 2:
if (code_point <= 0x7F) retval = CGPT_FAILED;
break;
case 3:
if (code_point <= 0x7FF) retval = CGPT_FAILED;
break;
case 4:
if (code_point <= 0xFFFF) retval = CGPT_FAILED;
break;
}
if (retval == CGPT_FAILED) break; /* leave immediately */
if ((code_point <= 0xD7FF) ||
(code_point >= 0xE000 && code_point <= 0xFFFF)) {
utf16[s16idx++] = code_point;
maxoutput -= 1;
} else if (code_point >= 0x10000 && code_point <= 0x10FFFF &&
maxoutput >= 2) {
utf16[s16idx++] = 0xD800 | ((code_point >> 10) - 0x0040);
utf16[s16idx++] = 0xDC00 | (code_point & 0x03FF);
maxoutput -= 2;
} else {
/* Three possibilities fall into here. Both are failure cases.
* a. surrogate pair (non-BMP characters; 0xD800~0xDFFF)
* b. invalid code point > 0x10FFFF
* c. buffer underrun
*/
retval = CGPT_FAILED;
break;
}
}
}
/* A null-terminator shows up before the UTF8 sequence ends. */
if (expected_units != decoded_units) {
retval = CGPT_FAILED;
}
utf16[s16idx++] = 0;
return retval;
}
/* global types to compare against */
const Guid guid_chromeos_firmware = GPT_ENT_TYPE_CHROMEOS_FIRMWARE;
const Guid guid_chromeos_kernel = GPT_ENT_TYPE_CHROMEOS_KERNEL;
const Guid guid_chromeos_rootfs = GPT_ENT_TYPE_CHROMEOS_ROOTFS;
const Guid guid_linux_data = GPT_ENT_TYPE_LINUX_DATA;
const Guid guid_chromeos_reserved = GPT_ENT_TYPE_CHROMEOS_RESERVED;
const Guid guid_efi = GPT_ENT_TYPE_EFI;
const Guid guid_unused = GPT_ENT_TYPE_UNUSED;
static struct {
const Guid *type;
char *name;
char *description;
} supported_types[] = {
{&guid_chromeos_firmware, "firmware", "ChromeOS firmware"},
{&guid_chromeos_kernel, "kernel", "ChromeOS kernel"},
{&guid_chromeos_rootfs, "rootfs", "ChromeOS rootfs"},
{&guid_linux_data, "data", "Linux data"},
{&guid_chromeos_reserved, "reserved", "ChromeOS reserved"},
{&guid_efi, "efi", "EFI System Partition"},
{&guid_unused, "unused", "Unused (nonexistent) partition"},
};
/* Resolves human-readable GPT type.
* Returns CGPT_OK if found.
* Returns CGPT_FAILED if no known type found. */
int ResolveType(const Guid *type, char *buf) {
int i;
for (i = 0; i < ARRAY_COUNT(supported_types); ++i) {
if (!memcmp(type, supported_types[i].type, sizeof(Guid))) {
strcpy(buf, supported_types[i].description);
return CGPT_OK;
}
}
return CGPT_FAILED;
}
int SupportedType(const char *name, Guid *type) {
int i;
for (i = 0; i < ARRAY_COUNT(supported_types); ++i) {
if (!strcmp(name, supported_types[i].name)) {
memcpy(type, supported_types[i].type, sizeof(Guid));
return CGPT_OK;
}
}
return CGPT_FAILED;
}
void PrintTypes(void) {
int i;
printf("The partition type may also be given as one of these aliases:\n\n");
for (i = 0; i < ARRAY_COUNT(supported_types); ++i) {
printf(" %-10s %s\n", supported_types[i].name,
supported_types[i].description);
}
printf("\n");
}
uint32_t GetNumberOfEntries(const GptData *gpt) {
GptHeader *header = 0;
if (gpt->valid_headers & MASK_PRIMARY)
header = (GptHeader*)gpt->primary_header;
else if (gpt->valid_headers & MASK_SECONDARY)
header = (GptHeader*)gpt->secondary_header;
else
return 0;
return header->number_of_entries;
}
static uint32_t GetSizeOfEntries(const GptData *gpt) {
GptHeader *header = 0;
if (gpt->valid_headers & MASK_PRIMARY)
header = (GptHeader*)gpt->primary_header;
else if (gpt->valid_headers & MASK_SECONDARY)
header = (GptHeader*)gpt->secondary_header;
else
return 0;
return header->size_of_entry;
}
GptEntry *GetEntry(GptData *gpt, int secondary, uint32_t entry_index) {
uint8_t *entries;
uint32_t stride = GetSizeOfEntries(gpt);
require(stride);
require(entry_index < GetNumberOfEntries(gpt));
if (secondary == PRIMARY) {
entries = gpt->primary_entries;
} else if (secondary == SECONDARY) {
entries = gpt->secondary_entries;
} else { /* ANY_VALID */
require(secondary == ANY_VALID);
if (gpt->valid_entries & MASK_PRIMARY) {
entries = gpt->primary_entries;
} else {
require(gpt->valid_entries & MASK_SECONDARY);
entries = gpt->secondary_entries;
}
}
return (GptEntry*)(&entries[stride * entry_index]);
}
void SetPriority(GptData *gpt, int secondary, uint32_t entry_index,
int priority) {
GptEntry *entry;
entry = GetEntry(gpt, secondary, entry_index);
require(priority >= 0 && priority <= CGPT_ATTRIBUTE_MAX_PRIORITY);
entry->attrs.fields.gpt_att &= ~CGPT_ATTRIBUTE_PRIORITY_MASK;
entry->attrs.fields.gpt_att |= priority << CGPT_ATTRIBUTE_PRIORITY_OFFSET;
}
int GetPriority(GptData *gpt, int secondary, uint32_t entry_index) {
GptEntry *entry;
entry = GetEntry(gpt, secondary, entry_index);
return (entry->attrs.fields.gpt_att & CGPT_ATTRIBUTE_PRIORITY_MASK) >>
CGPT_ATTRIBUTE_PRIORITY_OFFSET;
}
void SetTries(GptData *gpt, int secondary, uint32_t entry_index, int tries) {
GptEntry *entry;
entry = GetEntry(gpt, secondary, entry_index);
require(tries >= 0 && tries <= CGPT_ATTRIBUTE_MAX_TRIES);
entry->attrs.fields.gpt_att &= ~CGPT_ATTRIBUTE_TRIES_MASK;
entry->attrs.fields.gpt_att |= tries << CGPT_ATTRIBUTE_TRIES_OFFSET;
}
int GetTries(GptData *gpt, int secondary, uint32_t entry_index) {
GptEntry *entry;
entry = GetEntry(gpt, secondary, entry_index);
return (entry->attrs.fields.gpt_att & CGPT_ATTRIBUTE_TRIES_MASK) >>
CGPT_ATTRIBUTE_TRIES_OFFSET;
}
void SetSuccessful(GptData *gpt, int secondary, uint32_t entry_index,
int success) {
GptEntry *entry;
entry = GetEntry(gpt, secondary, entry_index);
require(success >= 0 && success <= CGPT_ATTRIBUTE_MAX_SUCCESSFUL);
entry->attrs.fields.gpt_att &= ~CGPT_ATTRIBUTE_SUCCESSFUL_MASK;
entry->attrs.fields.gpt_att |= success << CGPT_ATTRIBUTE_SUCCESSFUL_OFFSET;
}
int GetSuccessful(GptData *gpt, int secondary, uint32_t entry_index) {
GptEntry *entry;
entry = GetEntry(gpt, secondary, entry_index);
return (entry->attrs.fields.gpt_att & CGPT_ATTRIBUTE_SUCCESSFUL_MASK) >>
CGPT_ATTRIBUTE_SUCCESSFUL_OFFSET;
}
#define TOSTRING(A) #A
const char *GptError(int errnum) {
const char *error_string[] = {
TOSTRING(GPT_SUCCESS),
TOSTRING(GPT_ERROR_NO_VALID_KERNEL),
TOSTRING(GPT_ERROR_INVALID_HEADERS),
TOSTRING(GPT_ERROR_INVALID_ENTRIES),
TOSTRING(GPT_ERROR_INVALID_SECTOR_SIZE),
TOSTRING(GPT_ERROR_INVALID_SECTOR_NUMBER),
TOSTRING(GPT_ERROR_INVALID_UPDATE_TYPE)
};
if (errnum < 0 || errnum >= ARRAY_COUNT(error_string))
return "<illegal value>";
return error_string[errnum];
}
/* Update CRC value if necessary. */
void UpdateCrc(GptData *gpt) {
GptHeader *primary_header, *secondary_header;
primary_header = (GptHeader*)gpt->primary_header;
secondary_header = (GptHeader*)gpt->secondary_header;
if (gpt->modified & GPT_MODIFIED_ENTRIES1 &&
memcmp(primary_header, GPT_HEADER_SIGNATURE2,
GPT_HEADER_SIGNATURE_SIZE)) {
primary_header->entries_crc32 =
Crc32(gpt->primary_entries, TOTAL_ENTRIES_SIZE);
}
if (gpt->modified & GPT_MODIFIED_ENTRIES2) {
secondary_header->entries_crc32 =
Crc32(gpt->secondary_entries, TOTAL_ENTRIES_SIZE);
}
if (gpt->modified & GPT_MODIFIED_HEADER1) {
primary_header->header_crc32 = 0;
primary_header->header_crc32 = Crc32(
(const uint8_t *)primary_header, sizeof(GptHeader));
}
if (gpt->modified & GPT_MODIFIED_HEADER2) {
secondary_header->header_crc32 = 0;
secondary_header->header_crc32 = Crc32(
(const uint8_t *)secondary_header, sizeof(GptHeader));
}
}
/* Two headers are NOT bitwise identical. For example, my_lba pointers to header
* itself so that my_lba in primary and secondary is definitely different.
* Only the following fields should be identical.
*
* first_usable_lba
* last_usable_lba
* number_of_entries
* size_of_entry
* disk_uuid
*
* If any of above field are not matched, overwrite secondary with primary since
* we always trust primary.
* If any one of header is invalid, copy from another. */
int IsSynonymous(const GptHeader* a, const GptHeader* b) {
if ((a->first_usable_lba == b->first_usable_lba) &&
(a->last_usable_lba == b->last_usable_lba) &&
(a->number_of_entries == b->number_of_entries) &&
(a->size_of_entry == b->size_of_entry) &&
(!memcmp(&a->disk_uuid, &b->disk_uuid, sizeof(Guid))))
return 1;
return 0;
}
/* Primary entries and secondary entries should be bitwise identical.
* If two entries tables are valid, compare them. If not the same,
* overwrites secondary with primary (primary always has higher priority),
* and marks secondary as modified.
* If only one is valid, overwrites invalid one.
* If all are invalid, does nothing.
* This function returns bit masks for GptData.modified field.
* Note that CRC is NOT re-computed in this function.
*/
uint8_t RepairEntries(GptData *gpt, const uint32_t valid_entries) {
/* If we have an alternate GPT header signature, don't overwrite
* the secondary GPT with the primary one as that might wipe the
* partition table. Also don't overwrite the primary one with the
* secondary one as that will stop Windows from booting. */
GptHeader* h = (GptHeader*)(gpt->primary_header);
if (!memcmp(h->signature, GPT_HEADER_SIGNATURE2, GPT_HEADER_SIGNATURE_SIZE))
return 0;
if (valid_entries == MASK_BOTH) {
if (memcmp(gpt->primary_entries, gpt->secondary_entries,
TOTAL_ENTRIES_SIZE)) {
memcpy(gpt->secondary_entries, gpt->primary_entries, TOTAL_ENTRIES_SIZE);
return GPT_MODIFIED_ENTRIES2;
}
} else if (valid_entries == MASK_PRIMARY) {
memcpy(gpt->secondary_entries, gpt->primary_entries, TOTAL_ENTRIES_SIZE);
return GPT_MODIFIED_ENTRIES2;
} else if (valid_entries == MASK_SECONDARY) {
memcpy(gpt->primary_entries, gpt->secondary_entries, TOTAL_ENTRIES_SIZE);
return GPT_MODIFIED_ENTRIES1;
}
return 0;
}
/* The above five fields are shared between primary and secondary headers.
* We can recover one header from another through copying those fields. */
void CopySynonymousParts(GptHeader* target, const GptHeader* source) {
target->first_usable_lba = source->first_usable_lba;
target->last_usable_lba = source->last_usable_lba;
target->number_of_entries = source->number_of_entries;
target->size_of_entry = source->size_of_entry;
memcpy(&target->disk_uuid, &source->disk_uuid, sizeof(Guid));
}
/* This function repairs primary and secondary headers if possible.
* If both headers are valid (CRC32 is correct) but
* a) indicate inconsistent usable LBA ranges,
* b) inconsistent partition entry size and number,
* c) inconsistent disk_uuid,
* we will use the primary header to overwrite secondary header.
* If primary is invalid (CRC32 is wrong), then we repair it from secondary.
* If secondary is invalid (CRC32 is wrong), then we repair it from primary.
* This function returns the bitmasks for modified header.
* Note that CRC value is NOT re-computed in this function. UpdateCrc() will
* do it later.
*/
uint8_t RepairHeader(GptData *gpt, const uint32_t valid_headers) {
GptHeader *primary_header, *secondary_header;
primary_header = (GptHeader*)gpt->primary_header;
secondary_header = (GptHeader*)gpt->secondary_header;
if (valid_headers == MASK_BOTH) {
if (!IsSynonymous(primary_header, secondary_header)) {
CopySynonymousParts(secondary_header, primary_header);
return GPT_MODIFIED_HEADER2;
}
} else if (valid_headers == MASK_PRIMARY) {
memcpy(secondary_header, primary_header, sizeof(GptHeader));
secondary_header->my_lba = gpt->drive_sectors - 1; /* the last sector */
secondary_header->alternate_lba = primary_header->my_lba;
secondary_header->entries_lba = secondary_header->my_lba -
GPT_ENTRIES_SECTORS;
return GPT_MODIFIED_HEADER2;
} else if (valid_headers == MASK_SECONDARY) {
memcpy(primary_header, secondary_header, sizeof(GptHeader));
primary_header->my_lba = GPT_PMBR_SECTOR; /* the second sector on drive */
primary_header->alternate_lba = secondary_header->my_lba;
primary_header->entries_lba = primary_header->my_lba + GPT_HEADER_SECTOR;
return GPT_MODIFIED_HEADER1;
}
return 0;
}
int GuidEqual(const Guid *guid1, const Guid *guid2) {
return (0 == memcmp(guid1, guid2, sizeof(Guid)));
}
int IsZero(const Guid *gp) {
return GuidEqual(gp, &guid_unused);
}
void PMBRToStr(struct pmbr *pmbr, char *str, unsigned int buflen) {
char buf[GUID_STRLEN];
if (IsZero(&pmbr->boot_guid)) {
require(snprintf(str, buflen, "PMBR") < buflen);
} else {
GuidToStr(&pmbr->boot_guid, buf, sizeof(buf));
require(snprintf(str, buflen, "PMBR (Boot GUID: %s)", buf) < buflen);
}
}