Files
OpenCellular/firmware/lib/cgptlib/cgptlib.c
Bill Richardson 640b1c4207 Add more recovery_reason codes
There are several places where the same recovery_reason was used to report
slightly different points of failure. Let's create some new codes instead.

Remember that recovery mode is handled by RO firmware, so if an updated RW
firmware uses one of the new error codes, pressing TAB at the recovery
screen will say "We have no idea what this means". That's not a bug. This CL
deprecates the original codes, so the fact that the RO firmware doesn't
recognize it just means it's a new code reported by a new RW BIOS.

BUG=chromium-os:36562
TEST=manual
BRANCH=parrot

Run

  make && make runtests

It should pass. You can test some of the error cases on actual hardware by
using

  crossystem recovery_reason=86
  reboot

and pressing TAB at the recovery screen. For that example you should see the
message

  recovery_reason: 0x56 TPM lock error in rewritable firmare

Change-Id: I123c781e6c6f6fe0284c4fd49f5f5a855eece7df
Reviewed-on: https://gerrit.chromium.org/gerrit/38652
Commit-Ready: Bill Richardson <wfrichar@chromium.org>
Tested-by: Bill Richardson <wfrichar@chromium.org>
Reviewed-by: Randall Spangler <rspangler@chromium.org>
2012-11-26 12:04:42 -08:00

160 lines
5.2 KiB
C

/* Copyright (c) 2011 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "cgptlib.h"
#include "cgptlib_internal.h"
#include "crc32.h"
#include "gpt.h"
#include "utility.h"
#include "vboot_api.h"
int GptInit(GptData *gpt) {
int retval;
gpt->modified = 0;
gpt->current_kernel = CGPT_KERNEL_ENTRY_NOT_FOUND;
gpt->current_priority = 999;
retval = GptSanityCheck(gpt);
if (GPT_SUCCESS != retval) {
VBDEBUG(("GptInit() failed sanity check\n"));
return retval;
}
GptRepair(gpt);
return GPT_SUCCESS;
}
int GptNextKernelEntry(GptData* gpt, uint64_t* start_sector, uint64_t* size) {
GptHeader* header = (GptHeader*)gpt->primary_header;
GptEntry* entries = (GptEntry*)gpt->primary_entries;
GptEntry* e;
int new_kernel = CGPT_KERNEL_ENTRY_NOT_FOUND;
int new_prio = 0;
uint32_t i;
/* If we already found a kernel, continue the scan at the current
* kernel's prioity, in case there is another kernel with the same
* priority. */
if (gpt->current_kernel != CGPT_KERNEL_ENTRY_NOT_FOUND) {
for (i = gpt->current_kernel + 1; i < header->number_of_entries; i++) {
e = entries + i;
if (!IsKernelEntry(e))
continue;
VBDEBUG(("GptNextKernelEntry looking at same prio partition %d\n", i+1));
VBDEBUG(("GptNextKernelEntry s%d t%d p%d\n",
GetEntrySuccessful(e), GetEntryTries(e), GetEntryPriority(e)));
if (!(GetEntrySuccessful(e) || GetEntryTries(e)))
continue;
if (GetEntryPriority(e) == gpt->current_priority) {
gpt->current_kernel = i;
*start_sector = e->starting_lba;
*size = e->ending_lba - e->starting_lba + 1;
VBDEBUG(("GptNextKernelEntry likes that one\n"));
return GPT_SUCCESS;
}
}
}
/* We're still here, so scan for the remaining kernel with the
* highest priority less than the previous attempt. */
for (i = 0, e = entries; i < header->number_of_entries; i++, e++) {
int current_prio = GetEntryPriority(e);
if (!IsKernelEntry(e))
continue;
VBDEBUG(("GptNextKernelEntry looking at new prio partition %d\n", i+1));
VBDEBUG(("GptNextKernelEntry s%d t%d p%d\n",
GetEntrySuccessful(e), GetEntryTries(e), GetEntryPriority(e)));
if (!(GetEntrySuccessful(e) || GetEntryTries(e)))
continue;
if (current_prio >= gpt->current_priority)
continue; /* Already returned this kernel in a previous call */
if (current_prio > new_prio) {
new_kernel = i;
new_prio = current_prio;
}
}
/* Save what we found. Note that if we didn't find a new kernel,
* new_prio will still be -1, so future calls to this function will
* also fail. */
gpt->current_kernel = new_kernel;
gpt->current_priority = new_prio;
if (CGPT_KERNEL_ENTRY_NOT_FOUND == new_kernel) {
VBDEBUG(("GptNextKernelEntry no more kernels\n"));
return GPT_ERROR_NO_VALID_KERNEL;
}
VBDEBUG(("GptNextKernelEntry likes partition %d\n", new_kernel+1));
e = entries + new_kernel;
*start_sector = e->starting_lba;
*size = e->ending_lba - e->starting_lba + 1;
return GPT_SUCCESS;
}
int GptUpdateKernelEntry(GptData* gpt, uint32_t update_type) {
GptHeader* header = (GptHeader*)gpt->primary_header;
GptEntry* entries = (GptEntry*)gpt->primary_entries;
GptEntry* e = entries + gpt->current_kernel;
uint16_t previous_attr = e->attrs.fields.gpt_att;
if (gpt->current_kernel == CGPT_KERNEL_ENTRY_NOT_FOUND)
return GPT_ERROR_INVALID_UPDATE_TYPE;
if (!IsKernelEntry(e))
return GPT_ERROR_INVALID_UPDATE_TYPE;
switch (update_type) {
case GPT_UPDATE_ENTRY_TRY: {
/* Used up a try */
int tries;
if (GetEntrySuccessful(e))
return GPT_SUCCESS; /* Successfully booted this partition, so
* tries field is ignored. */
tries = GetEntryTries(e);
if (tries > 1) {
/* Still have tries left */
SetEntryTries(e, tries - 1);
break;
}
/* Out of tries, so drop through and mark partition bad. */
}
case GPT_UPDATE_ENTRY_BAD: {
/* Giving up on this partition entirely. */
if (!GetEntrySuccessful(e)) {
/* Only clear tries and priority if the successful bit is not set. */
e->attrs.fields.gpt_att = previous_attr & ~(
CGPT_ATTRIBUTE_TRIES_MASK |
CGPT_ATTRIBUTE_PRIORITY_MASK);
}
break;
}
default:
return GPT_ERROR_INVALID_UPDATE_TYPE;
}
/* If no change to attributes, we're done */
if (e->attrs.fields.gpt_att == previous_attr)
return GPT_SUCCESS;
/* Update the CRCs */
header->entries_crc32 = Crc32((const uint8_t *)entries,
header->size_of_entry *
header->number_of_entries);
header->header_crc32 = HeaderCrc(header);
gpt->modified |= GPT_MODIFIED_HEADER1 | GPT_MODIFIED_ENTRIES1;
/* Use the repair function to update the other copy of the GPT.
* This is a tad inefficient, but is much faster than the disk I/O
* to update the GPT on disk so it doesn't matter. */
gpt->valid_headers = MASK_PRIMARY;
gpt->valid_entries = MASK_PRIMARY;
GptRepair(gpt);
return GPT_SUCCESS;
}