mirror of
https://github.com/Telecominfraproject/OpenCellular.git
synced 2025-11-24 02:05:01 +00:00
This gives recovery mode information on two boots back instead of one, which may be handy for debugging. It also allows determining whether a failure of the current boot should try the other slot or go to recovery, using only information stored in NV storage. Added crossystem support for printing the fields, and unit tests. BUG=chrome-os-partner:32585 BRANCH=none TEST=make runtests; VBOOT2=1 make runtests Change-Id: Ia9f4186210d30217b902db7c513ae4ab8851f8f4 Signed-off-by: Randall Spangler <rspangler@chromium.org> Reviewed-on: https://chromium-review.googlesource.com/221230 Reviewed-by: Daisuke Nojiri <dnojiri@chromium.org>
576 lines
16 KiB
C
576 lines
16 KiB
C
/* Copyright (c) 2014 The Chromium OS Authors. All rights reserved.
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*
|
|
* Misc functions which need access to vb2_context but are not public APIs
|
|
*/
|
|
|
|
#include "2sysincludes.h"
|
|
#include "2api.h"
|
|
#include "2common.h"
|
|
#include "2misc.h"
|
|
#include "2nvstorage.h"
|
|
#include "2secdata.h"
|
|
#include "2sha.h"
|
|
#include "2rsa.h"
|
|
|
|
int vb2_validate_gbb_signature(uint8_t *sig) {
|
|
const static uint8_t sig_xor[VB2_GBB_SIGNATURE_SIZE] =
|
|
VB2_GBB_XOR_SIGNATURE;
|
|
int i;
|
|
for (i = 0; i < VB2_GBB_SIGNATURE_SIZE; i++) {
|
|
if (sig[i] != (sig_xor[i] ^ VB2_GBB_XOR_CHARS[i]))
|
|
return VB2_ERROR_GBB_MAGIC;
|
|
}
|
|
return VB2_SUCCESS;
|
|
}
|
|
|
|
void vb2_workbuf_from_ctx(struct vb2_context *ctx, struct vb2_workbuf *wb)
|
|
{
|
|
vb2_workbuf_init(wb, ctx->workbuf + ctx->workbuf_used,
|
|
ctx->workbuf_size - ctx->workbuf_used);
|
|
}
|
|
|
|
int vb2_read_gbb_header(struct vb2_context *ctx, struct vb2_gbb_header *gbb)
|
|
{
|
|
int rv;
|
|
|
|
/* Read the entire header */
|
|
rv = vb2ex_read_resource(ctx, VB2_RES_GBB, 0, gbb, sizeof(*gbb));
|
|
if (rv)
|
|
return rv;
|
|
|
|
/* Make sure it's really a GBB */
|
|
rv = vb2_validate_gbb_signature(gbb->signature);
|
|
if (rv)
|
|
return rv;
|
|
|
|
/* Check for compatible version */
|
|
if (gbb->major_version != VB2_GBB_MAJOR_VER)
|
|
return VB2_ERROR_GBB_VERSION;
|
|
|
|
/* Current code is not backwards-compatible to 1.0 headers */
|
|
if (gbb->minor_version < VB2_GBB_MINOR_VER)
|
|
return VB2_ERROR_GBB_TOO_OLD;
|
|
|
|
/*
|
|
* Header size should be at least as big as we expect. It could be
|
|
* bigger, if the header has grown.
|
|
*/
|
|
if (gbb->header_size < sizeof(*gbb))
|
|
return VB2_ERROR_GBB_HEADER_SIZE;
|
|
|
|
return VB2_SUCCESS;
|
|
}
|
|
|
|
void vb2_fail(struct vb2_context *ctx, uint8_t reason, uint8_t subcode)
|
|
{
|
|
struct vb2_shared_data *sd = vb2_get_sd(ctx);
|
|
|
|
/* If NV data hasn't been initialized, initialize it now */
|
|
if (!(sd->status & VB2_SD_STATUS_NV_INIT))
|
|
vb2_nv_init(ctx);
|
|
|
|
/* See if we were far enough in the boot process to choose a slot */
|
|
if (sd->status & VB2_SD_STATUS_CHOSE_SLOT) {
|
|
|
|
/* Boot failed */
|
|
vb2_nv_set(ctx, VB2_NV_FW_RESULT, VB2_FW_RESULT_FAILURE);
|
|
|
|
/* Use up remaining tries */
|
|
vb2_nv_set(ctx, VB2_NV_TRY_COUNT, 0);
|
|
|
|
/*
|
|
* Try the other slot next time. We'll alternate
|
|
* between slots, which may help if one or both slots is
|
|
* flaky.
|
|
*/
|
|
vb2_nv_set(ctx, VB2_NV_TRY_NEXT, 1 - sd->fw_slot);
|
|
|
|
/*
|
|
* If we didn't try the other slot last boot, or we tried it
|
|
* and it didn't fail, try it next boot.
|
|
*/
|
|
if (sd->last_fw_slot != 1 - sd->fw_slot ||
|
|
sd->last_fw_result != VB2_FW_RESULT_FAILURE)
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If we're still here, we failed before choosing a slot, or both
|
|
* this slot and the other slot failed in successive boots. So we
|
|
* need to go to recovery.
|
|
*
|
|
* Set a recovery reason and subcode only if they're not already set.
|
|
* If recovery is already requested, it's a more specific error code
|
|
* than later code is providing and we shouldn't overwrite it.
|
|
*/
|
|
VB2_DEBUG("Both slots are bad. Need recovery\n");
|
|
if (!vb2_nv_get(ctx, VB2_NV_RECOVERY_REQUEST)) {
|
|
vb2_nv_set(ctx, VB2_NV_RECOVERY_REQUEST, reason);
|
|
vb2_nv_set(ctx, VB2_NV_RECOVERY_SUBCODE, subcode);
|
|
}
|
|
}
|
|
|
|
int vb2_init_context(struct vb2_context *ctx)
|
|
{
|
|
struct vb2_shared_data *sd = vb2_get_sd(ctx);
|
|
|
|
/* Don't do anything if the context has already been initialized */
|
|
if (ctx->workbuf_used)
|
|
return VB2_SUCCESS;
|
|
|
|
/*
|
|
* Workbuf had better be big enough for our shared data struct and
|
|
* aligned. Not much we can do if it isn't; we'll die before we can
|
|
* store a recovery reason.
|
|
*/
|
|
if (ctx->workbuf_size < sizeof(*sd))
|
|
return VB2_ERROR_INITCTX_WORKBUF_SMALL;
|
|
if (!vb_aligned(ctx->workbuf, VB2_WORKBUF_ALIGN))
|
|
return VB2_ERROR_INITCTX_WORKBUF_ALIGN;
|
|
|
|
/* Initialize the shared data at the start of the work buffer */
|
|
memset(sd, 0, sizeof(*sd));
|
|
ctx->workbuf_used = sizeof(*sd);
|
|
return VB2_SUCCESS;
|
|
}
|
|
|
|
void vb2_check_recovery(struct vb2_context *ctx)
|
|
{
|
|
struct vb2_shared_data *sd = vb2_get_sd(ctx);
|
|
|
|
/*
|
|
* Read the current recovery request, unless there's already been a
|
|
* failure earlier in the boot process.
|
|
*/
|
|
if (!sd->recovery_reason)
|
|
sd->recovery_reason = vb2_nv_get(ctx, VB2_NV_RECOVERY_REQUEST);
|
|
|
|
/* Clear the recovery request so we don't get stuck in recovery mode */
|
|
if (sd->recovery_reason) {
|
|
vb2_nv_set(ctx, VB2_NV_RECOVERY_REQUEST,
|
|
VB2_RECOVERY_NOT_REQUESTED);
|
|
/*
|
|
* Note that we ignore failures clearing the request. We only
|
|
* hit this code path if recovery mode has already been
|
|
* requested, so what more can we do? Don't want to obscure
|
|
* the original reason for going into recovery mode.
|
|
*/
|
|
}
|
|
|
|
/* If forcing recovery, override recovery reason */
|
|
if (ctx->flags & VB2_CONTEXT_FORCE_RECOVERY_MODE) {
|
|
sd->recovery_reason = VB2_RECOVERY_RO_MANUAL;
|
|
sd->flags = VB2_SD_FLAG_MANUAL_RECOVERY;
|
|
}
|
|
|
|
/* If recovery reason is non-zero, tell caller we need recovery mode */
|
|
if (sd->recovery_reason)
|
|
ctx->flags |= VB2_CONTEXT_RECOVERY_MODE;
|
|
}
|
|
|
|
int vb2_fw_parse_gbb(struct vb2_context *ctx)
|
|
{
|
|
struct vb2_shared_data *sd = vb2_get_sd(ctx);
|
|
struct vb2_gbb_header *gbb;
|
|
struct vb2_workbuf wb;
|
|
int rv;
|
|
|
|
vb2_workbuf_from_ctx(ctx, &wb);
|
|
|
|
/* Read GBB into next chunk of work buffer */
|
|
gbb = vb2_workbuf_alloc(&wb, sizeof(*gbb));
|
|
if (!gbb)
|
|
return VB2_ERROR_GBB_WORKBUF;
|
|
|
|
rv = vb2_read_gbb_header(ctx, gbb);
|
|
if (rv)
|
|
return rv;
|
|
|
|
/* Extract the only things we care about at firmware time */
|
|
sd->gbb_flags = gbb->flags;
|
|
sd->gbb_rootkey_offset = gbb->rootkey_offset;
|
|
sd->gbb_rootkey_size = gbb->rootkey_size;
|
|
|
|
return VB2_SUCCESS;
|
|
}
|
|
|
|
int vb2_check_dev_switch(struct vb2_context *ctx)
|
|
{
|
|
struct vb2_shared_data *sd = vb2_get_sd(ctx);
|
|
uint32_t flags;
|
|
uint32_t old_flags;
|
|
int is_dev = 0;
|
|
int rv;
|
|
|
|
/* Read secure flags */
|
|
rv = vb2_secdata_get(ctx, VB2_SECDATA_FLAGS, &flags);
|
|
if (rv)
|
|
return rv;
|
|
|
|
old_flags = flags;
|
|
|
|
/* Handle dev disable request */
|
|
if (vb2_nv_get(ctx, VB2_NV_DISABLE_DEV_REQUEST)) {
|
|
flags &= ~VB2_SECDATA_FLAG_DEV_MODE;
|
|
|
|
/* Clear the request */
|
|
vb2_nv_set(ctx, VB2_NV_DISABLE_DEV_REQUEST, 0);
|
|
}
|
|
|
|
/* Check virtual dev switch */
|
|
if (flags & VB2_SECDATA_FLAG_DEV_MODE)
|
|
is_dev = 1;
|
|
|
|
/* Handle forcing dev mode via physical switch */
|
|
if (ctx->flags & VB2_CONTEXT_FORCE_DEVELOPER_MODE)
|
|
is_dev = 1;
|
|
|
|
/* Check if GBB is forcing dev mode */
|
|
if (sd->gbb_flags & VB2_GBB_FLAG_FORCE_DEV_SWITCH_ON)
|
|
is_dev = 1;
|
|
|
|
/* Handle whichever mode we end up in */
|
|
if (is_dev) {
|
|
/* Developer mode */
|
|
sd->flags |= VB2_SD_DEV_MODE_ENABLED;
|
|
ctx->flags |= VB2_CONTEXT_DEVELOPER_MODE;
|
|
|
|
flags |= VB2_SECDATA_FLAG_LAST_BOOT_DEVELOPER;
|
|
} else {
|
|
/* Normal mode */
|
|
flags &= ~VB2_SECDATA_FLAG_LAST_BOOT_DEVELOPER;
|
|
|
|
/*
|
|
* Disable dev_boot_* flags. This ensures they will be
|
|
* initially disabled if the user later transitions back into
|
|
* developer mode.
|
|
*/
|
|
vb2_nv_set(ctx, VB2_NV_DEV_BOOT_USB, 0);
|
|
vb2_nv_set(ctx, VB2_NV_DEV_BOOT_LEGACY, 0);
|
|
vb2_nv_set(ctx, VB2_NV_DEV_BOOT_SIGNED_ONLY, 0);
|
|
}
|
|
|
|
if (flags != old_flags) {
|
|
/*
|
|
* Just changed dev mode state. Clear TPM owner. This must be
|
|
* done here instead of simply passing a flag to
|
|
* vb2_check_tpm_clear(), because we don't want to update
|
|
* last_boot_developer and then fail to clear the TPM owner.
|
|
*/
|
|
rv = vb2ex_tpm_clear_owner(ctx);
|
|
if (rv) {
|
|
/*
|
|
* Note that this truncates rv to 8 bit. Which is not
|
|
* as useful as the full error code, but we don't have
|
|
* NVRAM space to store the full 32-bit code.
|
|
*/
|
|
vb2_fail(ctx, VB2_RECOVERY_TPM_CLEAR_OWNER, rv);
|
|
return rv;
|
|
}
|
|
|
|
/* Save new flags */
|
|
rv = vb2_secdata_set(ctx, VB2_SECDATA_FLAGS, flags);
|
|
if (rv)
|
|
return rv;
|
|
}
|
|
|
|
return VB2_SUCCESS;
|
|
}
|
|
|
|
int vb2_check_tpm_clear(struct vb2_context *ctx)
|
|
{
|
|
int rv;
|
|
|
|
/* Check if we've been asked to clear the owner */
|
|
if (!vb2_nv_get(ctx, VB2_NV_CLEAR_TPM_OWNER_REQUEST))
|
|
return VB2_SUCCESS; /* No need to clear */
|
|
|
|
/* Request applies one time only */
|
|
vb2_nv_set(ctx, VB2_NV_CLEAR_TPM_OWNER_REQUEST, 0);
|
|
|
|
/* Try clearing */
|
|
rv = vb2ex_tpm_clear_owner(ctx);
|
|
if (rv) {
|
|
/*
|
|
* Note that this truncates rv to 8 bit. Which is not as
|
|
* useful as the full error code, but we don't have NVRAM space
|
|
* to store the full 32-bit code.
|
|
*/
|
|
vb2_fail(ctx, VB2_RECOVERY_TPM_CLEAR_OWNER, rv);
|
|
return rv;
|
|
}
|
|
|
|
/* Clear successful */
|
|
vb2_nv_set(ctx, VB2_NV_CLEAR_TPM_OWNER_DONE, 1);
|
|
return VB2_SUCCESS;
|
|
}
|
|
|
|
int vb2_select_fw_slot(struct vb2_context *ctx)
|
|
{
|
|
struct vb2_shared_data *sd = vb2_get_sd(ctx);
|
|
uint32_t tries;
|
|
|
|
/* Get result of last boot */
|
|
sd->last_fw_slot = vb2_nv_get(ctx, VB2_NV_FW_TRIED);
|
|
sd->last_fw_result = vb2_nv_get(ctx, VB2_NV_FW_RESULT);
|
|
|
|
/* Save to the previous result fields in NV storage */
|
|
vb2_nv_set(ctx, VB2_NV_FW_PREV_TRIED, sd->last_fw_slot);
|
|
vb2_nv_set(ctx, VB2_NV_FW_PREV_RESULT, sd->last_fw_result);
|
|
|
|
/* Clear result, since we don't know what will happen this boot */
|
|
vb2_nv_set(ctx, VB2_NV_FW_RESULT, VB2_FW_RESULT_UNKNOWN);
|
|
|
|
/* Get slot to try */
|
|
sd->fw_slot = vb2_nv_get(ctx, VB2_NV_TRY_NEXT);
|
|
|
|
/* Check try count */
|
|
tries = vb2_nv_get(ctx, VB2_NV_TRY_COUNT);
|
|
|
|
if (sd->last_fw_result == VB2_FW_RESULT_TRYING &&
|
|
sd->last_fw_slot == sd->fw_slot &&
|
|
tries == 0) {
|
|
/*
|
|
* We used up our last try on the previous boot, so fall back
|
|
* to the other slot this boot.
|
|
*/
|
|
sd->fw_slot = 1 - sd->fw_slot;
|
|
vb2_nv_set(ctx, VB2_NV_TRY_NEXT, sd->fw_slot);
|
|
}
|
|
|
|
if (tries > 0) {
|
|
/* Still trying this firmware */
|
|
vb2_nv_set(ctx, VB2_NV_FW_RESULT, VB2_FW_RESULT_TRYING);
|
|
|
|
/* Decrement non-zero try count */
|
|
vb2_nv_set(ctx, VB2_NV_TRY_COUNT, tries - 1);
|
|
}
|
|
|
|
/* Store the slot we're trying */
|
|
vb2_nv_set(ctx, VB2_NV_FW_TRIED, sd->fw_slot);
|
|
|
|
/* Set context flag if we're using slot B */
|
|
if (sd->fw_slot)
|
|
ctx->flags |= VB2_CONTEXT_FW_SLOT_B;
|
|
|
|
/* Set status flag */
|
|
sd->status |= VB2_SD_STATUS_CHOSE_SLOT;
|
|
|
|
return VB2_SUCCESS;
|
|
}
|
|
|
|
int vb2_verify_fw_keyblock(struct vb2_context *ctx)
|
|
{
|
|
struct vb2_shared_data *sd = vb2_get_sd(ctx);
|
|
struct vb2_workbuf wb;
|
|
|
|
uint8_t *key_data;
|
|
uint32_t key_size;
|
|
struct vb2_packed_key *packed_key;
|
|
struct vb2_public_key root_key;
|
|
|
|
struct vb2_keyblock *kb;
|
|
uint32_t block_size;
|
|
|
|
uint32_t sec_version;
|
|
int rv;
|
|
|
|
vb2_workbuf_from_ctx(ctx, &wb);
|
|
|
|
/* Read the root key */
|
|
key_size = sd->gbb_rootkey_size;
|
|
key_data = vb2_workbuf_alloc(&wb, key_size);
|
|
if (!key_data)
|
|
return VB2_ERROR_FW_KEYBLOCK_WORKBUF_ROOT_KEY;
|
|
|
|
rv = vb2ex_read_resource(ctx, VB2_RES_GBB, sd->gbb_rootkey_offset,
|
|
key_data, key_size);
|
|
if (rv)
|
|
return rv;
|
|
|
|
/* Unpack the root key */
|
|
rv = vb2_unpack_key(&root_key, key_data, key_size);
|
|
if (rv)
|
|
return rv;
|
|
|
|
/* Load the firmware keyblock header after the root key */
|
|
kb = vb2_workbuf_alloc(&wb, sizeof(*kb));
|
|
if (!kb)
|
|
return VB2_ERROR_FW_KEYBLOCK_WORKBUF_HEADER;
|
|
|
|
rv = vb2ex_read_resource(ctx, VB2_RES_FW_VBLOCK, 0, kb, sizeof(*kb));
|
|
if (rv)
|
|
return rv;
|
|
|
|
block_size = kb->keyblock_size;
|
|
|
|
/*
|
|
* Load the entire keyblock, now that we know how big it is. Note that
|
|
* we're loading the entire keyblock instead of just the piece after
|
|
* the header. That means we re-read the header. But that's a tiny
|
|
* amount of data, and it makes the code much more straightforward.
|
|
*/
|
|
kb = vb2_workbuf_realloc(&wb, sizeof(*kb), block_size);
|
|
if (!kb)
|
|
return VB2_ERROR_FW_KEYBLOCK_WORKBUF;
|
|
|
|
rv = vb2ex_read_resource(ctx, VB2_RES_FW_VBLOCK, 0, kb, block_size);
|
|
if (rv)
|
|
return rv;
|
|
|
|
/* Verify the keyblock */
|
|
rv = vb2_verify_keyblock(kb, block_size, &root_key, &wb);
|
|
if (rv)
|
|
return rv;
|
|
|
|
/* Read the secure key version */
|
|
rv = vb2_secdata_get(ctx, VB2_SECDATA_VERSIONS, &sec_version);
|
|
if (rv)
|
|
return rv;
|
|
|
|
/* Key version is the upper 16 bits of the composite firmware version */
|
|
if (kb->data_key.key_version > 0xffff)
|
|
return VB2_ERROR_FW_KEYBLOCK_VERSION_RANGE;
|
|
if (kb->data_key.key_version < (sec_version >> 16))
|
|
return VB2_ERROR_FW_KEYBLOCK_VERSION_ROLLBACK;
|
|
|
|
sd->fw_version = kb->data_key.key_version << 16;
|
|
|
|
/*
|
|
* Save the data key in the work buffer. This overwrites the root key
|
|
* we read above. That's ok, because now that we have the data key we
|
|
* no longer need the root key.
|
|
*/
|
|
packed_key = (struct vb2_packed_key *)key_data;
|
|
|
|
packed_key->algorithm = kb->data_key.algorithm;
|
|
packed_key->key_version = kb->data_key.key_version;
|
|
packed_key->key_size = kb->data_key.key_size;
|
|
|
|
/*
|
|
* Use memmove() instead of memcpy(). In theory, the destination will
|
|
* never overlap because with the source because the root key is likely
|
|
* to be at least as large as the data key, but there's no harm here in
|
|
* being paranoid.
|
|
*/
|
|
memmove(key_data + packed_key->key_offset,
|
|
(uint8_t*)&kb->data_key + kb->data_key.key_offset,
|
|
packed_key->key_size);
|
|
|
|
/* Save the packed key offset and size */
|
|
sd->workbuf_data_key_offset = vb2_offset_of(ctx->workbuf, key_data);
|
|
sd->workbuf_data_key_size =
|
|
packed_key->key_offset + packed_key->key_size;
|
|
|
|
/* Preamble follows the keyblock in the vblock */
|
|
sd->vblock_preamble_offset = kb->keyblock_size;
|
|
|
|
/* Data key will persist in the workbuf after we return */
|
|
ctx->workbuf_used = sd->workbuf_data_key_offset +
|
|
sd->workbuf_data_key_size;
|
|
|
|
return VB2_SUCCESS;
|
|
}
|
|
|
|
// TODO: Terrible that this and the low-level verification want to have the
|
|
// same function name. Pick a better name...
|
|
int vb2_verify_fw_preamble2(struct vb2_context *ctx)
|
|
{
|
|
struct vb2_shared_data *sd = vb2_get_sd(ctx);
|
|
struct vb2_workbuf wb;
|
|
|
|
uint8_t *key_data = ctx->workbuf + sd->workbuf_data_key_offset;
|
|
uint32_t key_size = sd->workbuf_data_key_size;
|
|
struct vb2_public_key data_key;
|
|
|
|
/* Preamble goes in the next unused chunk of work buffer */
|
|
struct vb2_fw_preamble *pre;
|
|
uint32_t pre_size;
|
|
|
|
uint32_t sec_version;
|
|
int rv;
|
|
|
|
vb2_workbuf_from_ctx(ctx, &wb);
|
|
|
|
/* Unpack the firmware data key */
|
|
if (!sd->workbuf_data_key_size)
|
|
return VB2_ERROR_FW_PREAMBLE2_DATA_KEY;
|
|
|
|
rv = vb2_unpack_key(&data_key, key_data, key_size);
|
|
if (rv)
|
|
return rv;
|
|
|
|
/* Load the firmware preamble header */
|
|
pre = vb2_workbuf_alloc(&wb, sizeof(*pre));
|
|
if (!pre)
|
|
return VB2_ERROR_FW_PREAMBLE2_WORKBUF_HEADER;
|
|
|
|
rv = vb2ex_read_resource(ctx, VB2_RES_FW_VBLOCK,
|
|
sd->vblock_preamble_offset,
|
|
pre, sizeof(*pre));
|
|
if (rv)
|
|
return rv;
|
|
|
|
pre_size = pre->preamble_size;
|
|
|
|
/* Load the entire firmware preamble, now that we know how big it is */
|
|
pre = vb2_workbuf_realloc(&wb, sizeof(*pre), pre_size);
|
|
if (!pre)
|
|
return VB2_ERROR_FW_PREAMBLE2_WORKBUF;
|
|
|
|
rv = vb2ex_read_resource(ctx, VB2_RES_FW_VBLOCK,
|
|
sd->vblock_preamble_offset,
|
|
pre, pre_size);
|
|
if (rv)
|
|
return rv;
|
|
|
|
/* Work buffer now contains the data subkey data and the preamble */
|
|
|
|
/* Verify the preamble */
|
|
rv = vb2_verify_fw_preamble(pre, pre_size, &data_key, &wb);
|
|
if (rv)
|
|
return rv;
|
|
|
|
/* Read the secure key version */
|
|
rv = vb2_secdata_get(ctx, VB2_SECDATA_VERSIONS, &sec_version);
|
|
if (rv)
|
|
return rv;
|
|
|
|
/*
|
|
* Firmware version is the lower 16 bits of the composite firmware
|
|
* version.
|
|
*/
|
|
if (pre->firmware_version > 0xffff)
|
|
return VB2_ERROR_FW_PREAMBLE2_VERSION_RANGE;
|
|
|
|
/* Combine with the key version from vb2_verify_fw_keyblock() */
|
|
sd->fw_version |= pre->firmware_version;
|
|
if (sd->fw_version < sec_version)
|
|
return VB2_ERROR_FW_PREAMBLE2_VERSION_ROLLBACK;
|
|
|
|
/*
|
|
* If this is a newer version than in secure storage, and we
|
|
* successfully booted the same slot last boot, roll forward the
|
|
* version in secure storage.
|
|
*/
|
|
if (sd->fw_version > sec_version &&
|
|
sd->last_fw_slot == sd->fw_slot &&
|
|
sd->last_fw_result == VB2_FW_RESULT_SUCCESS) {
|
|
|
|
rv = vb2_secdata_set(ctx, VB2_SECDATA_VERSIONS, sd->fw_version);
|
|
if (rv)
|
|
return rv;
|
|
}
|
|
|
|
/* Keep track of where we put the preamble */
|
|
sd->workbuf_preamble_offset = vb2_offset_of(ctx->workbuf, pre);
|
|
sd->workbuf_preamble_size = pre_size;
|
|
|
|
/* Preamble will persist in work buffer after we return */
|
|
ctx->workbuf_used = sd->workbuf_preamble_offset + pre_size;
|
|
|
|
return VB2_SUCCESS;
|
|
}
|