mirror of
https://github.com/Telecominfraproject/OpenCellular.git
synced 2026-01-07 16:11:43 +00:00
This adds the basics for the accelerometer potion only of the ST lsm6ds0 accel/gyro. Still need to add the acceleration interrupt functionality, and all of the gyro portion of the chip. BUG=none BRANCH=none TEST=Tested on a samus prototype hacked up to have the lsm6ds0 connected to the EC i2c bus. Added motion sense task to the samus tasklist, added accelerometer information to the samus board file, and tested console functions interacting with accelerometer. The data seems reasonable, and can successfully change data rate and range. Change-Id: I7949d9c20642a40ede82dc291b2c80f01b0a7d8b Signed-off-by: Alec Berg <alecaberg@chromium.org> Reviewed-on: https://chromium-review.googlesource.com/196426 Reviewed-by: Bill Richardson <wfrichar@chromium.org> Reviewed-by: Randall Spangler <rspangler@chromium.org>
708 lines
19 KiB
C
708 lines
19 KiB
C
/* Copyright (c) 2014 The Chromium OS Authors. All rights reserved.
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
/* Motion sense module to read from various motion sensors. */
|
|
|
|
#include "accelerometer.h"
|
|
#include "common.h"
|
|
#include "console.h"
|
|
#include "hooks.h"
|
|
#include "host_command.h"
|
|
#include "lid_angle.h"
|
|
#include "math_util.h"
|
|
#include "motion_sense.h"
|
|
#include "timer.h"
|
|
#include "task.h"
|
|
#include "util.h"
|
|
|
|
/* Console output macros */
|
|
#define CPUTS(outstr) cputs(CC_MOTION_SENSE, outstr)
|
|
#define CPRINTF(format, args...) cprintf(CC_MOTION_SENSE, format, ## args)
|
|
|
|
/* Minimum time in between running motion sense task loop. */
|
|
#define MIN_MOTION_SENSE_WAIT_TIME (1 * MSEC)
|
|
|
|
/* Current acceleration vectors and current lid angle. */
|
|
static vector_3_t acc_lid_raw, acc_lid, acc_base;
|
|
static vector_3_t acc_lid_host, acc_base_host;
|
|
static float lid_angle_deg;
|
|
static int lid_angle_is_reliable;
|
|
|
|
/* Bounds for setting the sensor polling interval. */
|
|
#define MIN_POLLING_INTERVAL_MS 5
|
|
#define MAX_POLLING_INTERVAL_MS 1000
|
|
|
|
/* Accelerometer polling intervals based on chipset state. */
|
|
static int accel_interval_ap_on_ms = 10;
|
|
static const int accel_interval_ap_suspend_ms = 100;
|
|
|
|
/*
|
|
* Angle threshold for how close the hinge aligns with gravity before
|
|
* considering the lid angle calculation unreliable. For computational
|
|
* efficiency, value is given unit-less, so if you want the threshold to be
|
|
* at 15 degrees, the value would be cos(15 deg) = 0.96593.
|
|
*/
|
|
#define HINGE_ALIGNED_WITH_GRAVITY_THRESHOLD 0.96593F
|
|
|
|
/* Sampling interval for measuring acceleration and calculating lid angle. */
|
|
static int accel_interval_ms;
|
|
|
|
#ifdef CONFIG_CMD_LID_ANGLE
|
|
static int accel_disp;
|
|
#endif
|
|
|
|
/* For vector_3_t, define which coordinates are in which location. */
|
|
enum {
|
|
X, Y, Z
|
|
};
|
|
|
|
/* Pointer to constant acceleration orientation data. */
|
|
const struct accel_orientation * const p_acc_orient = &acc_orient;
|
|
|
|
/**
|
|
* Calculate the lid angle using two acceleration vectors, one recorded in
|
|
* the base and one in the lid.
|
|
*
|
|
* @param base Base accel vector
|
|
* @param lid Lid accel vector
|
|
* @param lid_angle Pointer to location to store lid angle result
|
|
*
|
|
* @return flag representing if resulting lid angle calculation is reliable.
|
|
*/
|
|
static int calculate_lid_angle(vector_3_t base, vector_3_t lid,
|
|
float *lid_angle)
|
|
{
|
|
vector_3_t v;
|
|
float ang_lid_to_base, ang_lid_90, ang_lid_270;
|
|
float lid_to_base, base_to_hinge;
|
|
int reliable = 1;
|
|
|
|
/*
|
|
* The angle between lid and base is:
|
|
* acos((cad(base, lid) - cad(base, hinge)^2) /(1 - cad(base, hinge)^2))
|
|
* where cad() is the cosine_of_angle_diff() function.
|
|
*
|
|
* Make sure to check for divide by 0.
|
|
*/
|
|
lid_to_base = cosine_of_angle_diff(base, lid);
|
|
base_to_hinge = cosine_of_angle_diff(base, p_acc_orient->hinge_axis);
|
|
|
|
/*
|
|
* If hinge aligns too closely with gravity, then result may be
|
|
* unreliable.
|
|
*/
|
|
if (ABS(base_to_hinge) > HINGE_ALIGNED_WITH_GRAVITY_THRESHOLD)
|
|
reliable = 0;
|
|
|
|
base_to_hinge = SQ(base_to_hinge);
|
|
|
|
/* Check divide by 0. */
|
|
if (ABS(1.0F - base_to_hinge) < 0.01F) {
|
|
*lid_angle = 0.0;
|
|
return 0;
|
|
}
|
|
|
|
ang_lid_to_base = arc_cos(
|
|
(lid_to_base - base_to_hinge) / (1 - base_to_hinge));
|
|
|
|
/*
|
|
* The previous calculation actually has two solutions, a positive and
|
|
* a negative solution. To figure out the sign of the answer, calculate
|
|
* the angle between the actual lid angle and the estimated vector if
|
|
* the lid were open to 90 deg, ang_lid_90. Also calculate the angle
|
|
* between the actual lid angle and the estimated vector if the lid
|
|
* were open to 270 deg, ang_lid_270. The smaller of the two angles
|
|
* represents which one is closer. If the lid is closer to the
|
|
* estimated 270 degree vector then the result is negative, otherwise
|
|
* it is positive.
|
|
*/
|
|
rotate(base, &p_acc_orient->rot_hinge_90, &v);
|
|
ang_lid_90 = cosine_of_angle_diff(v, lid);
|
|
rotate(v, &p_acc_orient->rot_hinge_180, &v);
|
|
ang_lid_270 = cosine_of_angle_diff(v, lid);
|
|
|
|
/*
|
|
* Note that ang_lid_90 and ang_lid_270 are not in degrees, because
|
|
* the arc_cos() was never performed. But, since arc_cos() is
|
|
* monotonically decreasing, we can do this comparison without ever
|
|
* taking arc_cos(). But, since the function is monotonically
|
|
* decreasing, the logic of this comparison is reversed.
|
|
*/
|
|
if (ang_lid_270 > ang_lid_90)
|
|
ang_lid_to_base = -ang_lid_to_base;
|
|
|
|
/* Place lid angle between 0 and 360 degrees. */
|
|
if (ang_lid_to_base < 0)
|
|
ang_lid_to_base += 360;
|
|
|
|
*lid_angle = ang_lid_to_base;
|
|
return reliable;
|
|
}
|
|
|
|
int motion_get_lid_angle(void)
|
|
{
|
|
if (lid_angle_is_reliable)
|
|
/*
|
|
* Round to nearest int by adding 0.5. Note, only works because
|
|
* lid angle is known to be positive.
|
|
*/
|
|
return (int)(lid_angle_deg + 0.5F);
|
|
else
|
|
return (int)LID_ANGLE_UNRELIABLE;
|
|
}
|
|
|
|
#ifdef CONFIG_ACCEL_CALIBRATE
|
|
void motion_get_accel_lid(vector_3_t *v, int adjusted)
|
|
{
|
|
memcpy(v, adjusted ? &acc_lid : &acc_lid_raw, sizeof(vector_3_t));
|
|
}
|
|
|
|
void motion_get_accel_base(vector_3_t *v)
|
|
{
|
|
memcpy(v, &acc_base, sizeof(vector_3_t));
|
|
}
|
|
#endif
|
|
|
|
static void set_ap_suspend_polling(void)
|
|
{
|
|
accel_interval_ms = accel_interval_ap_suspend_ms;
|
|
}
|
|
DECLARE_HOOK(HOOK_CHIPSET_SUSPEND, set_ap_suspend_polling, HOOK_PRIO_DEFAULT);
|
|
|
|
static void set_ap_on_polling(void)
|
|
{
|
|
accel_interval_ms = accel_interval_ap_on_ms;
|
|
}
|
|
DECLARE_HOOK(HOOK_CHIPSET_RESUME, set_ap_on_polling, HOOK_PRIO_DEFAULT);
|
|
|
|
|
|
void motion_sense_task(void)
|
|
{
|
|
static timestamp_t ts0, ts1;
|
|
int wait_us;
|
|
int ret;
|
|
uint8_t *lpc_status;
|
|
uint16_t *lpc_data;
|
|
int sample_id = 0;
|
|
|
|
lpc_status = host_get_memmap(EC_MEMMAP_ACC_STATUS);
|
|
lpc_data = (uint16_t *)host_get_memmap(EC_MEMMAP_ACC_DATA);
|
|
|
|
/*
|
|
* TODO(crosbug.com/p/27320): The motion_sense task currently assumes
|
|
* one configuration of motion sensors. Namely, it assumes there is
|
|
* one accel in the base, one in the lid, and they both use the same
|
|
* driver. Eventually, all of these assumptions will have to be removed
|
|
* when we have other configurations of motion sensors.
|
|
*/
|
|
|
|
/* Initialize accelerometers. */
|
|
ret = accel_init(ACCEL_LID);
|
|
ret |= accel_init(ACCEL_BASE);
|
|
|
|
/* If accelerometers do not initialize, then end task. */
|
|
if (ret != EC_SUCCESS) {
|
|
CPRINTF("[%T, Accelerometers failed to initialize. Stopping "
|
|
"motion sense task.\n");
|
|
return;
|
|
}
|
|
|
|
/* Initialize sampling interval. */
|
|
accel_interval_ms = accel_interval_ap_suspend_ms;
|
|
|
|
/* Set default accelerometer parameters. */
|
|
accel_set_range(ACCEL_LID, 2, 1);
|
|
accel_set_range(ACCEL_BASE, 2, 1);
|
|
accel_set_resolution(ACCEL_LID, 12, 1);
|
|
accel_set_resolution(ACCEL_BASE, 12, 1);
|
|
accel_set_datarate(ACCEL_LID, 100000, 1);
|
|
accel_set_datarate(ACCEL_BASE, 100000, 1);
|
|
|
|
/* Write to status byte to represent that accelerometers are present. */
|
|
*lpc_status |= EC_MEMMAP_ACC_STATUS_PRESENCE_BIT;
|
|
|
|
while (1) {
|
|
ts0 = get_time();
|
|
|
|
/* Read all accelerations. */
|
|
accel_read(ACCEL_LID, &acc_lid_raw[X], &acc_lid_raw[Y],
|
|
&acc_lid_raw[Z]);
|
|
accel_read(ACCEL_BASE, &acc_base[X], &acc_base[Y],
|
|
&acc_base[Z]);
|
|
|
|
/*
|
|
* Rotate the lid vector so the reference frame aligns with
|
|
* the base sensor.
|
|
*/
|
|
rotate(acc_lid_raw, &p_acc_orient->rot_align, &acc_lid);
|
|
|
|
/* Calculate angle of lid. */
|
|
lid_angle_is_reliable = calculate_lid_angle(acc_base, acc_lid,
|
|
&lid_angle_deg);
|
|
|
|
/* TODO(crosbug.com/p/25597): Add filter to smooth lid angle. */
|
|
|
|
/* Rotate accels into standard reference frame for the host. */
|
|
rotate(acc_base, &p_acc_orient->rot_standard_ref,
|
|
&acc_base_host);
|
|
rotate(acc_lid, &p_acc_orient->rot_standard_ref,
|
|
&acc_lid_host);
|
|
|
|
/*
|
|
* Set the busy bit before writing the sensor data. Increment
|
|
* the counter and clear the busy bit after writing the sensor
|
|
* data. On the host side, the host needs to make sure the busy
|
|
* bit is not set and that the counter remains the same before
|
|
* and after reading the data.
|
|
*/
|
|
*lpc_status |= EC_MEMMAP_ACC_STATUS_BUSY_BIT;
|
|
|
|
/*
|
|
* Copy sensor data to shared memory. Note that this code
|
|
* assumes little endian, which is what the host expects. Also,
|
|
* note that we share the lid angle calculation with host only
|
|
* for debugging purposes. The EC lid angle is an approximation
|
|
* with un-calibrated accels. The AP calculates a separate,
|
|
* more accurate lid angle.
|
|
*/
|
|
lpc_data[0] = motion_get_lid_angle();
|
|
lpc_data[1] = acc_base_host[X];
|
|
lpc_data[2] = acc_base_host[Y];
|
|
lpc_data[3] = acc_base_host[Z];
|
|
lpc_data[4] = acc_lid_host[X];
|
|
lpc_data[5] = acc_lid_host[Y];
|
|
lpc_data[6] = acc_lid_host[Z];
|
|
|
|
/*
|
|
* Increment sample id and clear busy bit to signal we finished
|
|
* updating data.
|
|
*/
|
|
sample_id = (sample_id + 1) &
|
|
EC_MEMMAP_ACC_STATUS_SAMPLE_ID_MASK;
|
|
*lpc_status = EC_MEMMAP_ACC_STATUS_PRESENCE_BIT | sample_id;
|
|
|
|
#ifdef CONFIG_LID_ANGLE_KEY_SCAN
|
|
lidangle_keyscan_update(motion_get_lid_angle());
|
|
#endif
|
|
|
|
#ifdef CONFIG_CMD_LID_ANGLE
|
|
if (accel_disp) {
|
|
CPRINTF("[%T ACC base=%-5d, %-5d, %-5d lid=%-5d, "
|
|
"%-5d, %-5d a=%-6.1d r=%d]\n",
|
|
acc_base[X], acc_base[Y], acc_base[Z],
|
|
acc_lid[X], acc_lid[Y], acc_lid[Z],
|
|
(int)(10*lid_angle_deg),
|
|
lid_angle_is_reliable);
|
|
}
|
|
#endif
|
|
|
|
/* Delay appropriately to keep sampling time consistent. */
|
|
ts1 = get_time();
|
|
wait_us = accel_interval_ms * MSEC - (ts1.val-ts0.val);
|
|
|
|
/*
|
|
* Guarantee some minimum delay to allow other lower priority
|
|
* tasks to run.
|
|
*/
|
|
if (wait_us < MIN_MOTION_SENSE_WAIT_TIME)
|
|
wait_us = MIN_MOTION_SENSE_WAIT_TIME;
|
|
|
|
task_wait_event(wait_us);
|
|
}
|
|
}
|
|
|
|
void accel_int_lid(enum gpio_signal signal)
|
|
{
|
|
/*
|
|
* Print statement is here for testing with console accelint command.
|
|
* Remove print statement when interrupt is used for real.
|
|
*/
|
|
CPRINTF("[%T Accelerometer wake-up interrupt occurred on lid]\n");
|
|
}
|
|
|
|
void accel_int_base(enum gpio_signal signal)
|
|
{
|
|
/*
|
|
* Print statement is here for testing with console accelint command.
|
|
* Remove print statement when interrupt is used for real.
|
|
*/
|
|
CPRINTF("[%T Accelerometer wake-up interrupt occurred on base]\n");
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* Host commands */
|
|
|
|
/**
|
|
* Temporary function to map host sensor IDs to EC sensor IDs.
|
|
*
|
|
* TODO(crosbug.com/p/27320): Eventually we need a board specific table
|
|
* specifying which motion sensors are attached and which driver to use to
|
|
* access that sensor. Once we have this, this function should be able to go
|
|
* away.
|
|
*/
|
|
static int host_sensor_id_to_ec_sensor_id(int host_id)
|
|
{
|
|
switch (host_id) {
|
|
case EC_MOTION_SENSOR_ACCEL_BASE:
|
|
return ACCEL_BASE;
|
|
case EC_MOTION_SENSOR_ACCEL_LID:
|
|
return ACCEL_LID;
|
|
}
|
|
|
|
/* If no match then the EC currently doesn't support ID received. */
|
|
return -1;
|
|
}
|
|
|
|
static int host_cmd_motion_sense(struct host_cmd_handler_args *args)
|
|
{
|
|
const struct ec_params_motion_sense *in = args->params;
|
|
struct ec_response_motion_sense *out = args->response;
|
|
int id, data;
|
|
|
|
switch (in->cmd) {
|
|
case MOTIONSENSE_CMD_DUMP:
|
|
/*
|
|
* TODO(crosbug.com/p/27320): Need to remove hard coding and
|
|
* use some motion_sense data structure from the board file to
|
|
* help fill in this response.
|
|
*/
|
|
out->dump.module_flags =
|
|
(*(host_get_memmap(EC_MEMMAP_ACC_STATUS)) &
|
|
EC_MEMMAP_ACC_STATUS_PRESENCE_BIT) ?
|
|
MOTIONSENSE_MODULE_FLAG_ACTIVE : 0;
|
|
out->dump.sensor_flags[0] = MOTIONSENSE_SENSOR_FLAG_PRESENT;
|
|
out->dump.sensor_flags[1] = MOTIONSENSE_SENSOR_FLAG_PRESENT;
|
|
out->dump.sensor_flags[2] = 0;
|
|
out->dump.data[0] = acc_base_host[X];
|
|
out->dump.data[1] = acc_base_host[Y];
|
|
out->dump.data[2] = acc_base_host[Z];
|
|
out->dump.data[3] = acc_lid_host[X];
|
|
out->dump.data[4] = acc_lid_host[Y];
|
|
out->dump.data[5] = acc_lid_host[Z];
|
|
|
|
args->response_size = sizeof(out->dump);
|
|
break;
|
|
|
|
case MOTIONSENSE_CMD_INFO:
|
|
/*
|
|
* TODO(crosbug.com/p/27320): Need to remove hard coding and
|
|
* use some motion_sense data structure from the board file to
|
|
* help fill in this response.
|
|
*/
|
|
id = host_sensor_id_to_ec_sensor_id(in->sensor_odr.sensor_num);
|
|
if (id < 0)
|
|
return EC_RES_INVALID_PARAM;
|
|
|
|
switch (id) {
|
|
case ACCEL_BASE:
|
|
out->info.type = MOTIONSENSE_TYPE_ACCEL;
|
|
out->info.location = MOTIONSENSE_LOC_BASE;
|
|
out->info.chip = MOTIONSENSE_CHIP_KXCJ9;
|
|
break;
|
|
case ACCEL_LID:
|
|
out->info.type = MOTIONSENSE_TYPE_ACCEL;
|
|
out->info.location = MOTIONSENSE_LOC_LID;
|
|
out->info.chip = MOTIONSENSE_CHIP_KXCJ9;
|
|
break;
|
|
default:
|
|
return EC_RES_INVALID_PARAM;
|
|
}
|
|
|
|
args->response_size = sizeof(out->info);
|
|
break;
|
|
|
|
case MOTIONSENSE_CMD_EC_RATE:
|
|
/*
|
|
* Set new sensor sampling rate when AP is on, if the data arg
|
|
* has a value.
|
|
*/
|
|
if (in->ec_rate.data != EC_MOTION_SENSE_NO_VALUE) {
|
|
/* Bound the new sampling rate. */
|
|
data = in->ec_rate.data;
|
|
if (data < MIN_POLLING_INTERVAL_MS)
|
|
data = MIN_POLLING_INTERVAL_MS;
|
|
if (data > MAX_POLLING_INTERVAL_MS)
|
|
data = MAX_POLLING_INTERVAL_MS;
|
|
|
|
accel_interval_ap_on_ms = data;
|
|
accel_interval_ms = data;
|
|
}
|
|
|
|
out->ec_rate.ret = accel_interval_ap_on_ms;
|
|
|
|
args->response_size = sizeof(out->ec_rate);
|
|
break;
|
|
|
|
case MOTIONSENSE_CMD_SENSOR_ODR:
|
|
/* Verify sensor number is valid. */
|
|
id = host_sensor_id_to_ec_sensor_id(in->sensor_odr.sensor_num);
|
|
if (id < 0)
|
|
return EC_RES_INVALID_PARAM;
|
|
|
|
/* Set new datarate if the data arg has a value. */
|
|
if (in->sensor_odr.data != EC_MOTION_SENSE_NO_VALUE) {
|
|
if (accel_set_datarate(id, in->sensor_odr.data,
|
|
in->sensor_odr.roundup) != EC_SUCCESS) {
|
|
CPRINTF("[%T MS bad sensor rate %d]\n",
|
|
in->sensor_odr.data);
|
|
return EC_RES_INVALID_PARAM;
|
|
}
|
|
}
|
|
|
|
accel_get_datarate(id, &data);
|
|
out->sensor_odr.ret = data;
|
|
|
|
args->response_size = sizeof(out->sensor_odr);
|
|
break;
|
|
|
|
case MOTIONSENSE_CMD_SENSOR_RANGE:
|
|
/* Verify sensor number is valid. */
|
|
id = host_sensor_id_to_ec_sensor_id(in->sensor_odr.sensor_num);
|
|
if (id < 0)
|
|
return EC_RES_INVALID_PARAM;
|
|
|
|
/* Set new datarate if the data arg has a value. */
|
|
if (in->sensor_range.data != EC_MOTION_SENSE_NO_VALUE) {
|
|
if (accel_set_range(id, in->sensor_range.data,
|
|
in->sensor_range.roundup) != EC_SUCCESS) {
|
|
CPRINTF("[%T MS bad sensor range %d]\n",
|
|
in->sensor_range.data);
|
|
return EC_RES_INVALID_PARAM;
|
|
}
|
|
}
|
|
|
|
accel_get_range(id, &data);
|
|
out->sensor_range.ret = data;
|
|
|
|
args->response_size = sizeof(out->sensor_range);
|
|
break;
|
|
|
|
case MOTIONSENSE_CMD_KB_WAKE_ANGLE:
|
|
#ifdef CONFIG_LID_ANGLE_KEY_SCAN
|
|
/* Set new keyboard wake lid angle if data arg has value. */
|
|
if (in->kb_wake_angle.data != EC_MOTION_SENSE_NO_VALUE)
|
|
lid_angle_set_kb_wake_angle(in->kb_wake_angle.data);
|
|
|
|
out->kb_wake_angle.ret = lid_angle_get_kb_wake_angle();
|
|
#else
|
|
out->kb_wake_angle.ret = 0;
|
|
#endif
|
|
args->response_size = sizeof(out->kb_wake_angle);
|
|
|
|
break;
|
|
|
|
default:
|
|
CPRINTF("[%T MS bad cmd 0x%x]\n", in->cmd);
|
|
return EC_RES_INVALID_PARAM;
|
|
}
|
|
|
|
return EC_RES_SUCCESS;
|
|
}
|
|
|
|
DECLARE_HOST_COMMAND(EC_CMD_MOTION_SENSE_CMD,
|
|
host_cmd_motion_sense,
|
|
EC_VER_MASK(0));
|
|
|
|
/*****************************************************************************/
|
|
/* Console commands */
|
|
#ifdef CONFIG_CMD_LID_ANGLE
|
|
static int command_ctrl_print_lid_angle_calcs(int argc, char **argv)
|
|
{
|
|
char *e;
|
|
int val;
|
|
|
|
if (argc > 3)
|
|
return EC_ERROR_PARAM_COUNT;
|
|
|
|
/* First argument is on/off whether to display accel data. */
|
|
if (argc > 1) {
|
|
if (!parse_bool(argv[1], &val))
|
|
return EC_ERROR_PARAM1;
|
|
|
|
accel_disp = val;
|
|
}
|
|
|
|
/*
|
|
* Second arg changes the accel task time interval. Note accel
|
|
* sampling interval will be clobbered when chipset suspends or
|
|
* resumes.
|
|
*/
|
|
if (argc > 2) {
|
|
val = strtoi(argv[2], &e, 0);
|
|
if (*e)
|
|
return EC_ERROR_PARAM2;
|
|
|
|
accel_interval_ms = val;
|
|
}
|
|
|
|
return EC_SUCCESS;
|
|
}
|
|
DECLARE_CONSOLE_COMMAND(lidangle, command_ctrl_print_lid_angle_calcs,
|
|
"on/off [interval]",
|
|
"Print lid angle calculations and set calculation frequency.", NULL);
|
|
#endif /* CONFIG_CMD_LID_ANGLE */
|
|
|
|
#ifdef CONFIG_CMD_ACCELS
|
|
static int command_accelrange(int argc, char **argv)
|
|
{
|
|
char *e;
|
|
int id, data, round = 1;
|
|
|
|
if (argc < 2 || argc > 4)
|
|
return EC_ERROR_PARAM_COUNT;
|
|
|
|
/* First argument is sensor id. */
|
|
id = strtoi(argv[1], &e, 0);
|
|
if (*e || id < 0 || id > ACCEL_COUNT)
|
|
return EC_ERROR_PARAM1;
|
|
|
|
if (argc >= 3) {
|
|
/* Second argument is data to write. */
|
|
data = strtoi(argv[2], &e, 0);
|
|
if (*e)
|
|
return EC_ERROR_PARAM2;
|
|
|
|
if (argc == 4) {
|
|
/* Third argument is rounding flag. */
|
|
round = strtoi(argv[3], &e, 0);
|
|
if (*e)
|
|
return EC_ERROR_PARAM3;
|
|
}
|
|
|
|
/*
|
|
* Write new range, if it returns invalid arg, then return
|
|
* a parameter error.
|
|
*/
|
|
if (accel_set_range(id, data, round) == EC_ERROR_INVAL)
|
|
return EC_ERROR_PARAM2;
|
|
} else {
|
|
accel_get_range(id, &data);
|
|
ccprintf("Range for sensor %d: %d\n", id, data);
|
|
}
|
|
|
|
return EC_SUCCESS;
|
|
}
|
|
DECLARE_CONSOLE_COMMAND(accelrange, command_accelrange,
|
|
"id [data [roundup]]",
|
|
"Read or write accelerometer range", NULL);
|
|
|
|
static int command_accelresolution(int argc, char **argv)
|
|
{
|
|
char *e;
|
|
int id, data, round = 1;
|
|
|
|
if (argc < 2 || argc > 4)
|
|
return EC_ERROR_PARAM_COUNT;
|
|
|
|
/* First argument is sensor id. */
|
|
id = strtoi(argv[1], &e, 0);
|
|
if (*e || id < 0 || id > ACCEL_COUNT)
|
|
return EC_ERROR_PARAM1;
|
|
|
|
if (argc >= 3) {
|
|
/* Second argument is data to write. */
|
|
data = strtoi(argv[2], &e, 0);
|
|
if (*e)
|
|
return EC_ERROR_PARAM2;
|
|
|
|
if (argc == 4) {
|
|
/* Third argument is rounding flag. */
|
|
round = strtoi(argv[3], &e, 0);
|
|
if (*e)
|
|
return EC_ERROR_PARAM3;
|
|
}
|
|
|
|
/*
|
|
* Write new resolution, if it returns invalid arg, then
|
|
* return a parameter error.
|
|
*/
|
|
if (accel_set_resolution(id, data, round) == EC_ERROR_INVAL)
|
|
return EC_ERROR_PARAM2;
|
|
} else {
|
|
accel_get_resolution(id, &data);
|
|
ccprintf("Resolution for sensor %d: %d\n", id, data);
|
|
}
|
|
|
|
return EC_SUCCESS;
|
|
}
|
|
DECLARE_CONSOLE_COMMAND(accelres, command_accelresolution,
|
|
"id [data [roundup]]",
|
|
"Read or write accelerometer resolution", NULL);
|
|
|
|
static int command_acceldatarate(int argc, char **argv)
|
|
{
|
|
char *e;
|
|
int id, data, round = 1;
|
|
|
|
if (argc < 2 || argc > 4)
|
|
return EC_ERROR_PARAM_COUNT;
|
|
|
|
/* First argument is sensor id. */
|
|
id = strtoi(argv[1], &e, 0);
|
|
if (*e || id < 0 || id > ACCEL_COUNT)
|
|
return EC_ERROR_PARAM1;
|
|
|
|
if (argc >= 3) {
|
|
/* Second argument is data to write. */
|
|
data = strtoi(argv[2], &e, 0);
|
|
if (*e)
|
|
return EC_ERROR_PARAM2;
|
|
|
|
if (argc == 4) {
|
|
/* Third argument is rounding flag. */
|
|
round = strtoi(argv[3], &e, 0);
|
|
if (*e)
|
|
return EC_ERROR_PARAM3;
|
|
}
|
|
|
|
/*
|
|
* Write new data rate, if it returns invalid arg, then
|
|
* return a parameter error.
|
|
*/
|
|
if (accel_set_datarate(id, data, round) == EC_ERROR_INVAL)
|
|
return EC_ERROR_PARAM2;
|
|
} else {
|
|
accel_get_datarate(id, &data);
|
|
ccprintf("Data rate for sensor %d: %d\n", id, data);
|
|
}
|
|
|
|
return EC_SUCCESS;
|
|
}
|
|
DECLARE_CONSOLE_COMMAND(accelrate, command_acceldatarate,
|
|
"id [data [roundup]]",
|
|
"Read or write accelerometer range", NULL);
|
|
|
|
#ifdef CONFIG_ACCEL_INTERRUPTS
|
|
static int command_accelerometer_interrupt(int argc, char **argv)
|
|
{
|
|
char *e;
|
|
int id, thresh;
|
|
|
|
if (argc != 3)
|
|
return EC_ERROR_PARAM_COUNT;
|
|
|
|
/* First argument is id. */
|
|
id = strtoi(argv[1], &e, 0);
|
|
if (*e || id < 0 || id >= ACCEL_COUNT)
|
|
return EC_ERROR_PARAM1;
|
|
|
|
/* Second argument is interrupt threshold. */
|
|
thresh = strtoi(argv[2], &e, 0);
|
|
if (*e)
|
|
return EC_ERROR_PARAM2;
|
|
|
|
accel_set_interrupt(id, thresh);
|
|
|
|
return EC_SUCCESS;
|
|
}
|
|
DECLARE_CONSOLE_COMMAND(accelint, command_accelerometer_interrupt,
|
|
"id threshold",
|
|
"Write interrupt threshold", NULL);
|
|
#endif /* CONFIG_ACCEL_INTERRUPTS */
|
|
|
|
#endif /* CONFIG_CMD_ACCELS */
|
|
|
|
|