Files
OpenCellular/common/motion_sense.c
Alec Berg 316f369f1c samus: add tap for battery
Adds double tap detection for samus. When user double taps
in S3 or lower to show battery state of charge on lightbar.

BUG=chrome-os-partner:29041
BRANCH=samus
TEST=make buildall
Tap the lid in S3 or lower.

Change-Id: Ic5f4709bdee2472cb7e91717318337b04bae1fc8
Signed-off-by: Alec Berg <alecaberg@chromium.org>
Reviewed-on: https://chromium-review.googlesource.com/221965
Reviewed-by: David Schneider <dnschneid@chromium.org>
2014-10-18 07:38:26 +00:00

949 lines
24 KiB
C

/* Copyright (c) 2014 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* Motion sense module to read from various motion sensors. */
#include "accelgyro.h"
#include "chipset.h"
#include "common.h"
#include "console.h"
#include "gesture.h"
#include "hooks.h"
#include "host_command.h"
#include "lid_angle.h"
#include "math_util.h"
#include "motion_sense.h"
#include "power.h"
#include "timer.h"
#include "task.h"
#include "util.h"
/* Console output macros */
#define CPUTS(outstr) cputs(CC_MOTION_SENSE, outstr)
#define CPRINTS(format, args...) cprints(CC_MOTION_SENSE, format, ## args)
#define CPRINTF(format, args...) cprintf(CC_MOTION_SENSE, format, ## args)
/* Minimum time in between running motion sense task loop. */
#define MIN_MOTION_SENSE_WAIT_TIME (1 * MSEC)
/* Time to wait in between failed attempts to initialize sensors */
#define TASK_MOTION_SENSE_WAIT_TIME (500 * MSEC)
/* For vector_3_t, define which coordinates are in which location. */
enum {
X, Y, Z
};
/* Current acceleration vectors and current lid angle. */
static float lid_angle_deg;
static int lid_angle_is_reliable;
/* Bounds for setting the sensor polling interval. */
#define MIN_POLLING_INTERVAL_MS 5
#define MAX_POLLING_INTERVAL_MS 1000
/* Define sensor sampling interval in suspend. */
#ifdef CONFIG_GESTURE_DETECTION
#define SUSPEND_SAMPLING_INTERVAL CONFIG_GESTURE_SAMPLING_INTERVAL_MS
#else
#define SUSPEND_SAMPLING_INTERVAL 100
#endif
/* Accelerometer polling intervals based on chipset state. */
static int accel_interval_ap_on_ms = 10;
/*
* Angle threshold for how close the hinge aligns with gravity before
* considering the lid angle calculation unreliable. For computational
* efficiency, value is given unit-less, so if you want the threshold to be
* at 15 degrees, the value would be cos(15 deg) = 0.96593.
*/
#define HINGE_ALIGNED_WITH_GRAVITY_THRESHOLD 0.96593F
/* Sampling interval for measuring acceleration and calculating lid angle. */
static int accel_interval_ms;
#ifdef CONFIG_CMD_LID_ANGLE
static int accel_disp;
#endif
/* Pointer to constant acceleration orientation data. */
const struct accel_orientation * const p_acc_orient = &acc_orient;
/**
* Calculate the lid angle using two acceleration vectors, one recorded in
* the base and one in the lid.
*
* @param base Base accel vector
* @param lid Lid accel vector
* @param lid_angle Pointer to location to store lid angle result
*
* @return flag representing if resulting lid angle calculation is reliable.
*/
static int calculate_lid_angle(const vector_3_t base, const vector_3_t lid,
float *lid_angle)
{
vector_3_t v;
float ang_lid_to_base, ang_lid_90, ang_lid_270;
float lid_to_base, base_to_hinge;
int reliable = 1;
/*
* The angle between lid and base is:
* acos((cad(base, lid) - cad(base, hinge)^2) /(1 - cad(base, hinge)^2))
* where cad() is the cosine_of_angle_diff() function.
*
* Make sure to check for divide by 0.
*/
lid_to_base = cosine_of_angle_diff(base, lid);
base_to_hinge = cosine_of_angle_diff(base, p_acc_orient->hinge_axis);
/*
* If hinge aligns too closely with gravity, then result may be
* unreliable.
*/
if (ABS(base_to_hinge) > HINGE_ALIGNED_WITH_GRAVITY_THRESHOLD)
reliable = 0;
base_to_hinge = SQ(base_to_hinge);
/* Check divide by 0. */
if (ABS(1.0F - base_to_hinge) < 0.01F) {
*lid_angle = 0.0;
return 0;
}
ang_lid_to_base = arc_cos(
(lid_to_base - base_to_hinge) / (1 - base_to_hinge));
/*
* The previous calculation actually has two solutions, a positive and
* a negative solution. To figure out the sign of the answer, calculate
* the angle between the actual lid angle and the estimated vector if
* the lid were open to 90 deg, ang_lid_90. Also calculate the angle
* between the actual lid angle and the estimated vector if the lid
* were open to 270 deg, ang_lid_270. The smaller of the two angles
* represents which one is closer. If the lid is closer to the
* estimated 270 degree vector then the result is negative, otherwise
* it is positive.
*/
rotate(base, p_acc_orient->rot_hinge_90, v);
ang_lid_90 = cosine_of_angle_diff(v, lid);
rotate(v, p_acc_orient->rot_hinge_180, v);
ang_lid_270 = cosine_of_angle_diff(v, lid);
/*
* Note that ang_lid_90 and ang_lid_270 are not in degrees, because
* the arc_cos() was never performed. But, since arc_cos() is
* monotonically decreasing, we can do this comparison without ever
* taking arc_cos(). But, since the function is monotonically
* decreasing, the logic of this comparison is reversed.
*/
if (ang_lid_270 > ang_lid_90)
ang_lid_to_base = -ang_lid_to_base;
/* Place lid angle between 0 and 360 degrees. */
if (ang_lid_to_base < 0)
ang_lid_to_base += 360;
*lid_angle = ang_lid_to_base;
return reliable;
}
int motion_get_lid_angle(void)
{
if (lid_angle_is_reliable)
/*
* Round to nearest int by adding 0.5. Note, only works because
* lid angle is known to be positive.
*/
return (int)(lid_angle_deg + 0.5F);
else
return (int)LID_ANGLE_UNRELIABLE;
}
static void clock_chipset_shutdown(void)
{
int i;
struct motion_sensor_t *sensor;
for (i = 0; i < motion_sensor_count; i++) {
sensor = &motion_sensors[i];
sensor->active = SENSOR_ACTIVE_S5;
sensor->odr = sensor->default_odr;
sensor->range = sensor->default_range;
if ((sensor->state == SENSOR_INITIALIZED) &&
!(sensor->active_mask & sensor->active))
sensor->drv->set_data_rate(sensor, 0, 0);
sensor->state = SENSOR_NOT_INITIALIZED;
}
#ifdef CONFIG_GESTURE_DETECTION
/* run gesture module hook which may override default behavior */
gesture_chipset_shutdown();
#endif
}
DECLARE_HOOK(HOOK_CHIPSET_SHUTDOWN, clock_chipset_shutdown, HOOK_PRIO_DEFAULT);
static void clock_chipset_suspend(void)
{
int i;
struct motion_sensor_t *sensor;
accel_interval_ms = SUSPEND_SAMPLING_INTERVAL;
for (i = 0; i < motion_sensor_count; i++) {
sensor = &motion_sensors[i];
sensor->active = SENSOR_ACTIVE_S3;
/* Saving power if the sensor is not active in S3 */
if ((sensor->state == SENSOR_INITIALIZED) &&
!(sensor->active_mask & sensor->active)) {
sensor->drv->set_data_rate(sensor, 0, 0);
sensor->state = SENSOR_NOT_INITIALIZED;
}
}
#ifdef CONFIG_GESTURE_DETECTION
/* run gesture module hook which may override default behavior */
gesture_chipset_suspend();
#endif
}
DECLARE_HOOK(HOOK_CHIPSET_SUSPEND, clock_chipset_suspend, HOOK_PRIO_DEFAULT);
static void clock_chipset_resume(void)
{
int i;
struct motion_sensor_t *sensor;
accel_interval_ms = accel_interval_ap_on_ms;
for (i = 0; i < motion_sensor_count; i++) {
sensor = &motion_sensors[i];
sensor->active = SENSOR_ACTIVE_S0;
}
#ifdef CONFIG_GESTURE_DETECTION
/* run gesture module hook which may override default behavior */
gesture_chipset_resume();
#endif
}
DECLARE_HOOK(HOOK_CHIPSET_RESUME, clock_chipset_resume, HOOK_PRIO_DEFAULT);
/* Write to LPC status byte to represent that accelerometers are present. */
static inline void set_present(uint8_t *lpc_status)
{
*lpc_status |= EC_MEMMAP_ACC_STATUS_PRESENCE_BIT;
}
/* Update/Write LPC data */
static inline void update_sense_data(uint8_t *lpc_status,
uint16_t *lpc_data, int *psample_id)
{
int i;
struct motion_sensor_t *sensor;
/*
* Set the busy bit before writing the sensor data. Increment
* the counter and clear the busy bit after writing the sensor
* data. On the host side, the host needs to make sure the busy
* bit is not set and that the counter remains the same before
* and after reading the data.
*/
*lpc_status |= EC_MEMMAP_ACC_STATUS_BUSY_BIT;
/*
* Copy sensor data to shared memory. Note that this code
* assumes little endian, which is what the host expects. Also,
* note that we share the lid angle calculation with host only
* for debugging purposes. The EC lid angle is an approximation
* with un-calibrated accels. The AP calculates a separate,
* more accurate lid angle.
*/
lpc_data[0] = motion_get_lid_angle();
for (i = 0; i < motion_sensor_count; i++) {
sensor = &motion_sensors[i];
lpc_data[1+3*i] = sensor->xyz[X];
lpc_data[2+3*i] = sensor->xyz[Y];
lpc_data[3+3*i] = sensor->xyz[Z];
}
/*
* Increment sample id and clear busy bit to signal we finished
* updating data.
*/
*psample_id = (*psample_id + 1) &
EC_MEMMAP_ACC_STATUS_SAMPLE_ID_MASK;
*lpc_status = EC_MEMMAP_ACC_STATUS_PRESENCE_BIT | *psample_id;
}
static inline void motion_sense_init(struct motion_sensor_t *sensor)
{
int ret, cnt = 3;
/* Initialize accelerometers. */
do {
ret = sensor->drv->init(sensor);
} while ((ret != EC_SUCCESS) && (--cnt > 0));
if (ret != EC_SUCCESS)
sensor->state = SENSOR_INIT_ERROR;
else
sensor->state = SENSOR_INITIALIZED;
}
static int motion_sense_read(struct motion_sensor_t *sensor)
{
int ret;
if (sensor->state != SENSOR_INITIALIZED)
return EC_ERROR_UNKNOWN;
/* Read all raw X,Y,Z accelerations. */
ret = sensor->drv->read(sensor,
&sensor->raw_xyz[X],
&sensor->raw_xyz[Y],
&sensor->raw_xyz[Z]);
if (ret != EC_SUCCESS)
return EC_ERROR_UNKNOWN;
return EC_SUCCESS;
}
/*
* Motion Sense Task
* Requirement: motion_sensors[] are defined in board.c file.
* Two (minimium) Accelerometers:
* 1 in the A/B(lid, display) and 1 in the C/D(base, keyboard)
* Gyro Sensor (optional)
*/
void motion_sense_task(void)
{
int i;
int wait_us;
static timestamp_t ts0, ts1;
uint8_t *lpc_status;
uint16_t *lpc_data;
int sample_id = 0;
int rd_cnt;
struct motion_sensor_t *sensor;
struct motion_sensor_t *accel_base = NULL;
struct motion_sensor_t *accel_lid = NULL;
lpc_status = host_get_memmap(EC_MEMMAP_ACC_STATUS);
lpc_data = (uint16_t *)host_get_memmap(EC_MEMMAP_ACC_DATA);
for (i = 0; i < motion_sensor_count; ++i) {
sensor = &motion_sensors[i];
sensor->state = SENSOR_NOT_INITIALIZED;
sensor->odr = sensor->default_odr;
sensor->range = sensor->default_range;
if ((LOCATION_BASE == sensor->location)
&& (SENSOR_ACCELEROMETER == sensor->type))
accel_base = sensor;
if ((LOCATION_LID == sensor->location)
&& (SENSOR_ACCELEROMETER == sensor->type)) {
accel_lid = sensor;
}
}
set_present(lpc_status);
/* Initialize sampling interval. */
accel_interval_ms = chipset_in_state(CHIPSET_STATE_ON) ?
accel_interval_ap_on_ms : SUSPEND_SAMPLING_INTERVAL;
while (1) {
ts0 = get_time();
rd_cnt = 0;
for (i = 0; i < motion_sensor_count; ++i) {
sensor = &motion_sensors[i];
/* if the sensor is active in the current power state */
if (sensor->active & sensor->active_mask) {
if (sensor->state == SENSOR_NOT_INITIALIZED)
motion_sense_init(sensor);
if (EC_SUCCESS == motion_sense_read(sensor))
rd_cnt++;
}
/*
* Rotate the lid accel vector
* so the reference frame aligns with the base sensor.
*/
if ((LOCATION_LID == sensor->location)
&& (SENSOR_ACCELEROMETER == sensor->type))
rotate(accel_lid->raw_xyz,
p_acc_orient->rot_align,
accel_lid->xyz);
else
memcpy(sensor->xyz, sensor->raw_xyz,
sizeof(vector_3_t));
}
#ifdef CONFIG_GESTURE_DETECTION
/* Run gesture recognition engine */
gesture_calc();
#endif
if (rd_cnt != motion_sensor_count)
goto motion_wait;
/* Calculate angle of lid accel. */
lid_angle_is_reliable = calculate_lid_angle(
accel_base->xyz,
accel_lid->xyz,
&lid_angle_deg);
for (i = 0; i < motion_sensor_count; ++i) {
sensor = &motion_sensors[i];
/* Rotate accels into standard reference frame. */
if (sensor->type == SENSOR_ACCELEROMETER)
rotate(sensor->xyz,
p_acc_orient->rot_standard_ref,
sensor->xyz);
}
#ifdef CONFIG_LID_ANGLE_KEY_SCAN
lidangle_keyscan_update(motion_get_lid_angle());
#endif
#ifdef CONFIG_CMD_LID_ANGLE
if (accel_disp) {
CPRINTF("[%T ");
for (i = 0; i < motion_sensor_count; ++i) {
sensor = &motion_sensors[i];
CPRINTF("%s=%-5d, %-5d, %-5d ", sensor->name,
sensor->raw_xyz[X],
sensor->raw_xyz[Y],
sensor->raw_xyz[Z]);
}
CPRINTF("a=%-6.1d r=%d", (int)(10*lid_angle_deg),
lid_angle_is_reliable);
CPRINTF("]\n");
}
#endif
update_sense_data(lpc_status, lpc_data, &sample_id);
motion_wait:
/* Delay appropriately to keep sampling time consistent. */
ts1 = get_time();
wait_us = accel_interval_ms * MSEC - (ts1.val-ts0.val);
/*
* Guarantee some minimum delay to allow other lower priority
* tasks to run.
*/
if (wait_us < MIN_MOTION_SENSE_WAIT_TIME)
wait_us = MIN_MOTION_SENSE_WAIT_TIME;
task_wait_event(wait_us);
}
}
void accel_int_lid(enum gpio_signal signal)
{
/*
* Print statement is here for testing with console accelint command.
* Remove print statement when interrupt is used for real.
*/
CPRINTS("Accelerometer wake-up interrupt occurred on lid");
}
void accel_int_base(enum gpio_signal signal)
{
/*
* Print statement is here for testing with console accelint command.
* Remove print statement when interrupt is used for real.
*/
CPRINTS("Accelerometer wake-up interrupt occurred on base");
}
/*****************************************************************************/
/* Host commands */
/* Function to map host sensor IDs to motion sensor. */
static struct motion_sensor_t
*host_sensor_id_to_motion_sensor(int host_id)
{
int i;
struct motion_sensor_t *sensor = NULL;
for (i = 0; i < motion_sensor_count; ++i) {
sensor = &motion_sensors[i];
if ((LOCATION_BASE == sensor->location)
&& (SENSOR_ACCELEROMETER == sensor->type)
&& (host_id == EC_MOTION_SENSOR_ACCEL_BASE)) {
break;
}
if ((LOCATION_LID == sensor->location)
&& (SENSOR_ACCELEROMETER == sensor->type)
&& (host_id == EC_MOTION_SENSOR_ACCEL_LID)) {
break;
}
if ((LOCATION_BASE == sensor->location)
&& (SENSOR_GYRO == sensor->type)
&& (host_id == EC_MOTION_SENSOR_GYRO)) {
break;
}
}
if (i == motion_sensor_count)
return NULL;
/* if sensor is powered and initialized, return match */
if ((sensor->active & sensor->active_mask)
&& (sensor->state == SENSOR_INITIALIZED))
return sensor;
/* If no match then the EC currently doesn't support ID received. */
return NULL;
}
static int host_cmd_motion_sense(struct host_cmd_handler_args *args)
{
const struct ec_params_motion_sense *in = args->params;
struct ec_response_motion_sense *out = args->response;
struct motion_sensor_t *sensor;
int i, data;
switch (in->cmd) {
case MOTIONSENSE_CMD_DUMP:
out->dump.module_flags =
(*(host_get_memmap(EC_MEMMAP_ACC_STATUS)) &
EC_MEMMAP_ACC_STATUS_PRESENCE_BIT) ?
MOTIONSENSE_MODULE_FLAG_ACTIVE : 0;
for (i = 0; i < motion_sensor_count; i++) {
sensor = &motion_sensors[i];
out->dump.sensor_flags[i] =
MOTIONSENSE_SENSOR_FLAG_PRESENT;
out->dump.data[0+3*i] = sensor->xyz[X];
out->dump.data[1+3*i] = sensor->xyz[Y];
out->dump.data[2+3*i] = sensor->xyz[Z];
}
args->response_size = sizeof(out->dump);
break;
case MOTIONSENSE_CMD_INFO:
sensor = host_sensor_id_to_motion_sensor(
in->sensor_odr.sensor_num);
if (sensor == NULL)
return EC_RES_INVALID_PARAM;
if (sensor->type == SENSOR_ACCELEROMETER)
out->info.type = MOTIONSENSE_TYPE_ACCEL;
else if (sensor->type == SENSOR_GYRO)
out->info.type = MOTIONSENSE_TYPE_GYRO;
if (sensor->location == LOCATION_BASE)
out->info.location = MOTIONSENSE_LOC_BASE;
else if (sensor->location == LOCATION_LID)
out->info.location = MOTIONSENSE_LOC_LID;
if (sensor->chip == SENSOR_CHIP_KXCJ9)
out->info.chip = MOTIONSENSE_CHIP_KXCJ9;
if (sensor->chip == SENSOR_CHIP_LSM6DS0)
out->info.chip = MOTIONSENSE_CHIP_LSM6DS0;
args->response_size = sizeof(out->info);
break;
case MOTIONSENSE_CMD_EC_RATE:
/*
* Set new sensor sampling rate when AP is on, if the data arg
* has a value.
*/
if (in->ec_rate.data != EC_MOTION_SENSE_NO_VALUE) {
/* Bound the new sampling rate. */
data = in->ec_rate.data;
if (data < MIN_POLLING_INTERVAL_MS)
data = MIN_POLLING_INTERVAL_MS;
if (data > MAX_POLLING_INTERVAL_MS)
data = MAX_POLLING_INTERVAL_MS;
accel_interval_ap_on_ms = data;
accel_interval_ms = data;
}
out->ec_rate.ret = accel_interval_ap_on_ms;
args->response_size = sizeof(out->ec_rate);
break;
case MOTIONSENSE_CMD_SENSOR_ODR:
/* Verify sensor number is valid. */
sensor = host_sensor_id_to_motion_sensor(
in->sensor_odr.sensor_num);
if (sensor == NULL)
return EC_RES_INVALID_PARAM;
/* Set new data rate if the data arg has a value. */
if (in->sensor_odr.data != EC_MOTION_SENSE_NO_VALUE) {
if (sensor->drv->set_data_rate(sensor,
in->sensor_odr.data,
in->sensor_odr.roundup)
!= EC_SUCCESS) {
CPRINTS("MS bad sensor rate %d",
in->sensor_odr.data);
return EC_RES_INVALID_PARAM;
}
}
sensor->drv->get_data_rate(sensor, &data);
/* Save configuration parameter: ODR */
sensor->odr = data;
out->sensor_odr.ret = data;
args->response_size = sizeof(out->sensor_odr);
break;
case MOTIONSENSE_CMD_SENSOR_RANGE:
/* Verify sensor number is valid. */
sensor = host_sensor_id_to_motion_sensor(
in->sensor_odr.sensor_num);
if (sensor == NULL)
return EC_RES_INVALID_PARAM;
/* Set new data rate if the data arg has a value. */
if (in->sensor_range.data != EC_MOTION_SENSE_NO_VALUE) {
if (sensor->drv->set_range(sensor,
in->sensor_range.data,
in->sensor_range.roundup)
!= EC_SUCCESS) {
CPRINTS("MS bad sensor range %d",
in->sensor_range.data);
return EC_RES_INVALID_PARAM;
}
}
sensor->drv->get_range(sensor, &data);
/* Save configuration parameter: range */
sensor->range = data;
out->sensor_range.ret = data;
args->response_size = sizeof(out->sensor_range);
break;
case MOTIONSENSE_CMD_KB_WAKE_ANGLE:
#ifdef CONFIG_LID_ANGLE_KEY_SCAN
/* Set new keyboard wake lid angle if data arg has value. */
if (in->kb_wake_angle.data != EC_MOTION_SENSE_NO_VALUE)
lid_angle_set_kb_wake_angle(in->kb_wake_angle.data);
out->kb_wake_angle.ret = lid_angle_get_kb_wake_angle();
#else
out->kb_wake_angle.ret = 0;
#endif
args->response_size = sizeof(out->kb_wake_angle);
break;
default:
CPRINTS("MS bad cmd 0x%x", in->cmd);
return EC_RES_INVALID_PARAM;
}
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_MOTION_SENSE_CMD,
host_cmd_motion_sense,
EC_VER_MASK(0));
/*****************************************************************************/
/* Console commands */
#ifdef CONFIG_CMD_LID_ANGLE
static int command_ctrl_print_lid_angle_calcs(int argc, char **argv)
{
char *e;
int val;
if (argc > 3)
return EC_ERROR_PARAM_COUNT;
/* First argument is on/off whether to display accel data. */
if (argc > 1) {
if (!parse_bool(argv[1], &val))
return EC_ERROR_PARAM1;
accel_disp = val;
}
/*
* Second arg changes the accel task time interval. Note accel
* sampling interval will be clobbered when chipset suspends or
* resumes.
*/
if (argc > 2) {
val = strtoi(argv[2], &e, 0);
if (*e)
return EC_ERROR_PARAM2;
accel_interval_ms = val;
}
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(lidangle, command_ctrl_print_lid_angle_calcs,
"on/off [interval]",
"Print lid angle calculations and set calculation frequency.", NULL);
#endif /* CONFIG_CMD_LID_ANGLE */
#ifdef CONFIG_CMD_ACCELS
static int command_accelrange(int argc, char **argv)
{
char *e;
int id, data, round = 1;
struct motion_sensor_t *sensor;
if (argc < 2 || argc > 4)
return EC_ERROR_PARAM_COUNT;
/* First argument is sensor id. */
id = strtoi(argv[1], &e, 0);
if (*e || id < 0 || id >= motion_sensor_count)
return EC_ERROR_PARAM1;
sensor = &motion_sensors[id];
if (argc >= 3) {
/* Second argument is data to write. */
data = strtoi(argv[2], &e, 0);
if (*e)
return EC_ERROR_PARAM2;
if (argc == 4) {
/* Third argument is rounding flag. */
round = strtoi(argv[3], &e, 0);
if (*e)
return EC_ERROR_PARAM3;
}
/*
* Write new range, if it returns invalid arg, then return
* a parameter error.
*/
if (sensor->drv->set_range(sensor,
data,
round) == EC_ERROR_INVAL)
return EC_ERROR_PARAM2;
} else {
sensor->drv->get_range(sensor, &data);
ccprintf("Range for sensor %d: %d\n", id, data);
}
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(accelrange, command_accelrange,
"id [data [roundup]]",
"Read or write accelerometer range", NULL);
static int command_accelresolution(int argc, char **argv)
{
char *e;
int id, data, round = 1;
struct motion_sensor_t *sensor;
if (argc < 2 || argc > 4)
return EC_ERROR_PARAM_COUNT;
/* First argument is sensor id. */
id = strtoi(argv[1], &e, 0);
if (*e || id < 0 || id >= motion_sensor_count)
return EC_ERROR_PARAM1;
sensor = &motion_sensors[id];
if (argc >= 3) {
/* Second argument is data to write. */
data = strtoi(argv[2], &e, 0);
if (*e)
return EC_ERROR_PARAM2;
if (argc == 4) {
/* Third argument is rounding flag. */
round = strtoi(argv[3], &e, 0);
if (*e)
return EC_ERROR_PARAM3;
}
/*
* Write new resolution, if it returns invalid arg, then
* return a parameter error.
*/
if (sensor->drv->set_resolution(sensor, data, round)
== EC_ERROR_INVAL)
return EC_ERROR_PARAM2;
} else {
sensor->drv->get_resolution(sensor, &data);
ccprintf("Resolution for sensor %d: %d\n", id, data);
}
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(accelres, command_accelresolution,
"id [data [roundup]]",
"Read or write accelerometer resolution", NULL);
static int command_accel_data_rate(int argc, char **argv)
{
char *e;
int id, data, round = 1;
struct motion_sensor_t *sensor;
if (argc < 2 || argc > 4)
return EC_ERROR_PARAM_COUNT;
/* First argument is sensor id. */
id = strtoi(argv[1], &e, 0);
if (*e || id < 0 || id >= motion_sensor_count)
return EC_ERROR_PARAM1;
sensor = &motion_sensors[id];
if (argc >= 3) {
/* Second argument is data to write. */
data = strtoi(argv[2], &e, 0);
if (*e)
return EC_ERROR_PARAM2;
if (argc == 4) {
/* Third argument is rounding flag. */
round = strtoi(argv[3], &e, 0);
if (*e)
return EC_ERROR_PARAM3;
}
/*
* Write new data rate, if it returns invalid arg, then
* return a parameter error.
*/
if (sensor->drv->set_data_rate(sensor, data, round)
== EC_ERROR_INVAL)
return EC_ERROR_PARAM2;
} else {
sensor->drv->get_data_rate(sensor, &data);
ccprintf("Data rate for sensor %d: %d\n", id, data);
}
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(accelrate, command_accel_data_rate,
"id [data [roundup]]",
"Read or write accelerometer ODR", NULL);
static int command_accel_read_xyz(int argc, char **argv)
{
char *e;
int id, x, y, z, n = 1;
struct motion_sensor_t *sensor;
if (argc < 2)
return EC_ERROR_PARAM_COUNT;
/* First argument is sensor id. */
id = strtoi(argv[1], &e, 0);
if (*e || id < 0 || id >= motion_sensor_count)
return EC_ERROR_PARAM1;
if (argc >= 3)
n = strtoi(argv[2], &e, 0);
sensor = &motion_sensors[id];
while ((n == -1) || (n-- > 0)) {
sensor->drv->read(sensor, &x, &y, &z);
ccprintf("Current raw data %d: %-5d %-5d %-5d\n", id, x, y, z);
ccprintf("Last calib. data %d: %-5d %-5d %-5d\n", id,
sensor->xyz[X], sensor->xyz[Y], sensor->xyz[Z]);
task_wait_event(MIN_MOTION_SENSE_WAIT_TIME);
}
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(accelread, command_accel_read_xyz,
"id [n]",
"Read sensor x/y/z", NULL);
static int command_accel_init(int argc, char **argv)
{
char *e;
int id;
struct motion_sensor_t *sensor;
if (argc < 2)
return EC_ERROR_PARAM_COUNT;
/* First argument is sensor id. */
id = strtoi(argv[1], &e, 0);
if (*e || id < 0 || id >= motion_sensor_count)
return EC_ERROR_PARAM1;
sensor = &motion_sensors[id];
motion_sense_init(sensor);
ccprintf("%s\n", sensor->name);
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(accelinit, command_accel_init,
"id",
"Init sensor", NULL);
#ifdef CONFIG_ACCEL_INTERRUPTS
static int command_accelerometer_interrupt(int argc, char **argv)
{
char *e;
int id, thresh;
struct motion_sensor_t *sensor;
if (argc != 3)
return EC_ERROR_PARAM_COUNT;
/* First argument is id. */
id = strtoi(argv[1], &e, 0);
if (*e || id < 0 || id >= motion_sensor_count)
return EC_ERROR_PARAM1;
sensor = &motion_sensors[id];
/* Second argument is interrupt threshold. */
thresh = strtoi(argv[2], &e, 0);
if (*e)
return EC_ERROR_PARAM2;
sensor->drv->set_interrupt(sensor, thresh);
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(accelint, command_accelerometer_interrupt,
"id threshold",
"Write interrupt threshold", NULL);
#endif /* CONFIG_ACCEL_INTERRUPTS */
#endif /* CONFIG_CMD_ACCELS */