Files
OpenCellular/tests/test_common.c
Gaurav Shah bd52fc793a VBoot Reference: Make kernel_config a 4K byte block, and move it after the verified boot block.
The kernel_config is now stored as a 4K binary block instead of the kconfig_options structure that was being used before. Since the verified boot code doesn't care what kernel config options are (other than the length of the kernel image and for verifying them before the rest of kernel), it is ok to keep them as a blackbox.

This CL also changes the verified boot kernel layout - VBlock Data followed by Kernel Config followed by the Kernel Image. This will allow them to be stored separately, or as a concatenated block (for easy memory mapping during kernel load). This should ease the process of generating a layout for verified boot kernel images which is also compatible with legacy BIOSes that don't support this mechanism.

Finally, there is also a new firmware API function to determine the size of a kernel verified boot block, given a pointer to its beginning (for determining the offset to the kernel config and data).

Review URL: http://codereview.chromium.org/1732022
2010-04-29 15:30:25 -07:00

242 lines
9.0 KiB
C

/* Copyright (c) 2010 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*
* Common functions used by tests.
*/
#include "test_common.h"
#include <stdio.h>
#include "cryptolib.h"
#include "file_keys.h"
#include "utility.h"
/* ANSI Color coding sequences. */
#define COL_GREEN "\e[1;32m"
#define COL_RED "\e[0;31m"
#define COL_STOP "\e[m"
/* Global test success flag. */
int gTestSuccess = 1;
int TEST_EQ(int result, int expected_result, char* testname) {
if (result == expected_result) {
fprintf(stderr, "%s Test " COL_GREEN "PASSED\n" COL_STOP, testname);
return 1;
}
else {
fprintf(stderr, "%s Test " COL_RED "FAILED\n" COL_STOP, testname);
gTestSuccess = 0;
return 0;
}
}
FirmwareImage* GenerateTestFirmwareImage(int algorithm,
const uint8_t* firmware_sign_key,
int firmware_key_version,
int firmware_version,
uint64_t firmware_len,
const char* root_key_file,
const char* firmware_key_file,
uint8_t firmware_data_fill_char) {
FirmwareImage* image = FirmwareImageNew();
Memcpy(image->magic, FIRMWARE_MAGIC, FIRMWARE_MAGIC_SIZE);
image->firmware_sign_algorithm = algorithm;
image->firmware_sign_key = (uint8_t*) Malloc(
RSAProcessedKeySize(image->firmware_sign_algorithm));
Memcpy(image->firmware_sign_key, firmware_sign_key,
RSAProcessedKeySize(image->firmware_sign_algorithm));
image->firmware_key_version = firmware_key_version;
/* Update correct header length. */
image->header_len = GetFirmwareHeaderLen(image);
/* Calculate SHA-512 digest on header and populate header_checksum. */
CalculateFirmwareHeaderChecksum(image, image->header_checksum);
/* Populate firmware and preamble with dummy data. */
image->firmware_version = firmware_version;
image->firmware_len = firmware_len;
image->preamble_signature = image->firmware_signature = NULL;
Memset(image->preamble, 'P', FIRMWARE_PREAMBLE_SIZE);
image->firmware_data = Malloc(image->firmware_len);
Memset(image->firmware_data, firmware_data_fill_char, image->firmware_len);
/* Generate and populate signatures. */
if (!AddFirmwareKeySignature(image, root_key_file)) {
debug("Couldn't create key signature.\n");
FirmwareImageFree(image);
return NULL;
}
if (!AddFirmwareSignature(image, firmware_key_file)) {
debug("Couldn't create firmware and preamble signature.\n");
FirmwareImageFree(image);
return NULL;
}
return image;
}
uint8_t* GenerateTestVerificationBlob(int algorithm,
const uint8_t* firmware_sign_key,
int firmware_key_version,
int firmware_version,
uint64_t firmware_len,
const char* root_key_file,
const char* firmware_key_file) {
FirmwareImage* image = NULL;
uint8_t* firmware_blob = NULL;
uint64_t firmware_blob_len = 0;
image = GenerateTestFirmwareImage(algorithm,
firmware_sign_key,
firmware_key_version,
firmware_version,
firmware_len,
root_key_file,
firmware_key_file,
'F');
firmware_blob = GetFirmwareBlob(image, &firmware_blob_len);
FirmwareImageFree(image);
return firmware_blob;
}
uint8_t* GenerateRollbackTestVerificationBlob(int firmware_key_version,
int firmware_version) {
FirmwareImage* image = NULL;
uint64_t len;
uint8_t* verification_blob = NULL;
uint8_t* firmware_sign_key = NULL;
firmware_sign_key = BufferFromFile("testkeys/key_rsa1024.keyb",
&len);
if (!firmware_sign_key)
return NULL;
image = GenerateTestFirmwareImage(0, /* RSA1024/SHA1 */
firmware_sign_key,
firmware_key_version,
firmware_version,
1, /* Firmware length. */
"testkeys/key_rsa8192.pem",
"testkeys/key_rsa1024.pem",
'F');
if (!image)
return NULL;
verification_blob = GetFirmwareBlob(image, &len);
FirmwareImageFree(image);
return verification_blob;
}
KernelImage* GenerateTestKernelImage(int firmware_sign_algorithm,
int kernel_sign_algorithm,
const uint8_t* kernel_sign_key,
int kernel_key_version,
int kernel_version,
uint64_t kernel_len,
const char* firmware_key_file,
const char* kernel_key_file,
uint8_t kernel_data_fill_char) {
KernelImage* image = KernelImageNew();
Memcpy(image->magic, KERNEL_MAGIC, KERNEL_MAGIC_SIZE);
image->header_version = 1;
image->firmware_sign_algorithm = firmware_sign_algorithm;
image->kernel_sign_algorithm = kernel_sign_algorithm;
image->kernel_key_version = kernel_key_version;
image->kernel_sign_key = (uint8_t*) Malloc(
RSAProcessedKeySize(image->kernel_sign_algorithm));
Memcpy(image->kernel_sign_key, kernel_sign_key,
RSAProcessedKeySize(image->kernel_sign_algorithm));
/* Update correct header length. */
image->header_len = GetKernelHeaderLen(image);
/* Calculate SHA-512 digest on header and populate header_checksum. */
CalculateKernelHeaderChecksum(image, image->header_checksum);
/* Populate kernel options and data with dummy data. */
image->kernel_version = kernel_version;
Memset(image->kernel_config, 0, sizeof(image->kernel_config));
image->kernel_len = kernel_len;
image->kernel_key_signature = image->kernel_signature = NULL;
image->kernel_data = Malloc(kernel_len);
Memset(image->kernel_data, kernel_data_fill_char, kernel_len);
/* Generate and populate signatures. */
if (!AddKernelKeySignature(image, firmware_key_file)) {
debug("Couldn't create key signature.\n");
KernelImageFree(image);
return NULL;
}
if (!AddKernelSignature(image, kernel_key_file)) {
debug("Couldn't create kernel option and kernel signature.\n");
KernelImageFree(image);
return NULL;
}
return image;
}
uint8_t* GenerateTestKernelBlob(int firmware_sign_algorithm,
int kernel_sign_algorithm,
const uint8_t* kernel_sign_key,
int kernel_key_version,
int kernel_version,
uint64_t kernel_len,
const char* firmware_key_file,
const char* kernel_key_file) {
KernelImage* image = NULL;
uint8_t* kernel_blob = NULL;
uint64_t kernel_blob_len = 0;
image = GenerateTestKernelImage(firmware_sign_algorithm,
kernel_sign_algorithm,
kernel_sign_key,
kernel_key_version,
kernel_version,
kernel_len,
firmware_key_file,
kernel_key_file,
'K');
kernel_blob = GetKernelBlob(image, &kernel_blob_len);
KernelImageFree(image);
return kernel_blob;
}
uint8_t* GenerateRollbackTestKernelBlob(int kernel_key_version,
int kernel_version,
int is_corrupt) {
KernelImage* image = NULL;
uint64_t len;
uint8_t* kernel_blob = NULL;
uint8_t* kernel_sign_key = NULL;
kernel_sign_key = BufferFromFile("testkeys/key_rsa1024.keyb",
&len);
if (!kernel_sign_key)
return NULL;
image = GenerateTestKernelImage(0, /* Firmware algo: RSA1024/SHA1 */
0, /* Kernel algo: RSA1024/SHA1 */
kernel_sign_key,
kernel_key_version,
kernel_version,
1, /* kernel length. */
"testkeys/key_rsa1024.pem",
"testkeys/key_rsa1024.pem",
'K');
if (!image)
return NULL;
if (is_corrupt) {
/* Invalidate image. */
Memset(image->kernel_data, 'X', image->kernel_len);
}
kernel_blob = GetKernelBlob(image, &len);
KernelImageFree(image);
return kernel_blob;
}