mirror of
https://github.com/Telecominfraproject/OpenCellular.git
synced 2026-01-09 00:51:29 +00:00
- Porting from cosmo code base. - Support clock initialization BRANCH=none BUG=chrome-os-partner:33813 TEST="make buildall -j; Verified on RevA1 Chip" Change-Id: I59e2bb133968d408acde44a3082e1b3b8f4bbbff Signed-off-by: Sheng-Liang Song <ssl@chromium.org> Reviewed-on: https://chromium-review.googlesource.com/236394 Reviewed-by: Bill Richardson <wfrichar@chromium.org>
620 lines
16 KiB
C
620 lines
16 KiB
C
/* Copyright (c) 2014 The Chromium OS Authors. All rights reserved.
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#include "pmu.h"
|
|
#include "task.h"
|
|
|
|
/*
|
|
* RC Trim constants
|
|
*/
|
|
#define RCTRIM_RESOLUTION (12)
|
|
#define RCTRIM_LOAD_VAL (1 << 11)
|
|
#define RCTRIM_RANGE_MAX (7 * 7)
|
|
#define RCTRIM_RANGE_MIN (-8 * 7)
|
|
#define RCTRIM_RANGE (RCTRIM_RANGE_MAX - RCTRIM_RANGE_MIN + 1)
|
|
|
|
/*
|
|
* Enable peripheral clock
|
|
* @param perih Peripheral from @ref uint32_t
|
|
*/
|
|
void pmu_clock_en(uint32_t periph)
|
|
{
|
|
if (periph <= 31)
|
|
GR_PMU_PERICLKSET0 = (1 << periph);
|
|
else
|
|
GR_PMU_PERICLKSET1 = (1 << (periph - 32));
|
|
}
|
|
|
|
/*
|
|
* Disable peripheral clock
|
|
* @param perih Peripheral from @ref uint32_t
|
|
*/
|
|
void pmu_clock_dis(uint32_t periph)
|
|
{
|
|
if (periph <= 31)
|
|
GR_PMU_PERICLKCLR0 = (1 << periph);
|
|
else
|
|
GR_PMU_PERICLKCLR1 = (1 << (periph - 32));
|
|
}
|
|
|
|
/*
|
|
* Peripheral reset
|
|
* @param periph Peripheral from @ref uint32_t
|
|
*/
|
|
void pmu_peripheral_rst(uint32_t periph)
|
|
{
|
|
/* Reset high */
|
|
if (periph <= 31)
|
|
GR_PMU_RST0 = 1 << periph;
|
|
else
|
|
GR_PMU_RST1 = 1 << (periph - 32);
|
|
}
|
|
|
|
/*
|
|
* Internal helper to convert value to trim code
|
|
*/
|
|
static uint32_t _pmu_value_to_trim(uint32_t val)
|
|
{
|
|
uint32_t base = val / 7;
|
|
uint32_t mod = val % 7;
|
|
uint32_t code = 0x0;
|
|
uint32_t digit;
|
|
|
|
/* Increasing count from right to left */
|
|
for (digit = 0; digit < 7; digit++) {
|
|
if (digit < mod)
|
|
code |= (((base + 1) & 0xF) << (4 * digit));
|
|
else
|
|
code |= ((base & 0xF) << (4 * digit));
|
|
}
|
|
|
|
return code;
|
|
}
|
|
|
|
/*
|
|
* Run the RC calibration counters
|
|
* This must be used otherwise the counters may get stuck
|
|
*/
|
|
static uint32_t _pmu_run_rc_counters(uint32_t load_val, uint32_t trim_val)
|
|
{
|
|
uint32_t trim_code;
|
|
|
|
/* Convert value to trim code */
|
|
trim_code = _pmu_value_to_trim(trim_val);
|
|
|
|
/* Set the trim value */
|
|
GWRITE_FIELD(XO, OSC_RC, TRIM, trim_code);
|
|
|
|
/* Reset counters */
|
|
GR_XO_OSC_RC_CAL_RSTB = 0x0;
|
|
GR_XO_OSC_RC_CAL_RSTB = 0x1;
|
|
|
|
/* Load */
|
|
GR_XO_OSC_RC_CAL_LOAD = load_val;
|
|
|
|
/* Do calibration */
|
|
GR_XO_OSC_RC_CAL_START = 0x1;
|
|
|
|
/*
|
|
* There is a small race condition because of the delay in dregfile.
|
|
* The start doesn't actually appear for 2 clock cycles after the write.
|
|
* So, poll until done goes low.
|
|
*/
|
|
while (GR_XO_OSC_RC_CAL_DONE)
|
|
;
|
|
|
|
/* Wait until it's done */
|
|
while (!GR_XO_OSC_RC_CAL_DONE)
|
|
;
|
|
|
|
/* Calculate the difference */
|
|
return GR_XO_OSC_RC_CAL_LOAD - GR_XO_OSC_RC_CAL_COUNT;
|
|
}
|
|
|
|
/*
|
|
* Calibrate RC trim
|
|
*/
|
|
uint32_t pmu_calibrate_rc_trim(void)
|
|
{
|
|
uint32_t size, iter;
|
|
uint32_t mid;
|
|
uint32_t diff;
|
|
|
|
/*
|
|
* Switch to crystal for calibration
|
|
* This should work since we are on an uncalibrated RC trim clock
|
|
*/
|
|
pmu_clock_switch_xo();
|
|
|
|
/* Clear the HOLD signal on dxo */
|
|
GR_XO_OSC_CLRHOLD = GC_XO_OSC_CLRHOLD_RC_TRIM_MASK;
|
|
|
|
/* Clear EN bit while iterating through codes */
|
|
GWRITE_FIELD(XO, OSC_RC, EN, 0);
|
|
|
|
/* Begin binary search */
|
|
mid = RCTRIM_RANGE_MAX - (RCTRIM_RANGE / 2);
|
|
size = RCTRIM_RANGE / 2;
|
|
for (iter = 0; iter < 8; iter++) {
|
|
/* Run the counters */
|
|
diff = _pmu_run_rc_counters(RCTRIM_LOAD_VAL, mid);
|
|
|
|
/*
|
|
* Test to see whether we are still outside of
|
|
* our desired resolution
|
|
*/
|
|
if ((diff < -RCTRIM_RESOLUTION)
|
|
|| (diff > RCTRIM_RESOLUTION)) {
|
|
if (diff > 0)
|
|
mid -= size / 2;
|
|
else
|
|
mid += size / 2;
|
|
}
|
|
|
|
/* Move to next range, round up */
|
|
size = (size + 1) >> 1;
|
|
}
|
|
|
|
/* Set the final trim value, set EN bit to lock in the code */
|
|
GR_XO_OSC_RC = (_pmu_value_to_trim(mid) << GC_XO_OSC_RC_TRIM_LSB)
|
|
| (0x1 << GC_XO_OSC_RC_EN_LSB);
|
|
|
|
/* Set EN bit to lock in this trim_code */
|
|
/* GWRITE_FIELD(XO, OSC_RC, EN, 1); */
|
|
|
|
/* Set the HOLD signal on dxo */
|
|
GR_XO_OSC_SETHOLD = GC_XO_OSC_SETHOLD_RC_TRIM_MASK;
|
|
|
|
/* Switch back to the RC trim now that we are calibrated */
|
|
/* pmu_clock_switch_rc_trim(); */
|
|
|
|
return _pmu_value_to_trim(mid);
|
|
}
|
|
|
|
/*
|
|
* Switch system clock to RC no trim
|
|
*/
|
|
uint32_t pmu_clock_switch_rc_notrim(void)
|
|
{
|
|
uint32_t osc_sel;
|
|
|
|
/* check which clock we are running on */
|
|
osc_sel = GR_PMU_OSC_SELECT_STAT;
|
|
|
|
if (osc_sel == GC_PMU_OSC_SELECT_RC) {
|
|
/* Already on untrimmed RC */
|
|
return 0;
|
|
} else if (osc_sel == GC_PMU_OSC_SELECT_XTL) {
|
|
/* Need to switch to RC trimmed first */
|
|
pmu_clock_switch_rc_trim(1);
|
|
}
|
|
|
|
/* Turn on XO clock */
|
|
pmu_clock_en(PERIPH_XO);
|
|
|
|
/* Power up RC notrim clock if it's currently off */
|
|
GWRITE_FIELD(PMU, CLRDIS, RC_NOTRIM, 1);
|
|
|
|
/* Switch to the clock */
|
|
GR_PMU_OSC_HOLD_CLR = 0x1; /* make sure the hold signal is clear */
|
|
GR_PMU_OSC_SELECT = GC_PMU_OSC_SELECT_RC;
|
|
/* make sure the hold signal is set for future power downs */
|
|
GR_PMU_OSC_HOLD_SET = 0x1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* enable clock doubler for USB purposes
|
|
*/
|
|
void pmu_enable_clock_doubler(void)
|
|
{
|
|
/* enable stuff */
|
|
GREG32(XO, OSC_ADC_CAL_FREQ2X) =
|
|
(GC_XO_OSC_ADC_CAL_FREQ2X_CNTL_DEFAULT
|
|
<< GC_XO_OSC_ADC_CAL_FREQ2X_CNTL_LSB) |
|
|
(1 << GC_XO_OSC_ADC_CAL_FREQ2X_EN_LSB);
|
|
/* enable more stuff */
|
|
GREG32(XO, OSC_CLKOUT) =
|
|
(1 << GC_XO_OSC_CLKOUT_ADC_EN_LSB) |
|
|
(1 << GC_XO_OSC_CLKOUT_PLL_EN_LSB) |
|
|
(1 << GC_XO_OSC_CLKOUT_BADC_EN_LSB) |
|
|
(1 << GC_XO_OSC_CLKOUT_USB_EN_LSB);
|
|
|
|
/* make sure doubled clock is selected */
|
|
GREG32(XO, OSC_24_48B_SEL) = GC_XO_OSC_24_48B_SEL_DEFAULT;
|
|
}
|
|
|
|
/*
|
|
* Switch system clock to RC trim
|
|
*/
|
|
uint32_t pmu_clock_switch_rc_trim(uint32_t skip_calibration)
|
|
{
|
|
uint32_t trimmed;
|
|
uint32_t trim_code;
|
|
uint32_t osc_sel;
|
|
|
|
/* check which clock we are running on */
|
|
osc_sel = GREG32(PMU, OSC_SELECT_STAT);
|
|
|
|
if (osc_sel == GC_PMU_OSC_SELECT_RC_TRIM) {
|
|
/*
|
|
* already using the rc_trim so nothing to do here
|
|
* make sure the hold signal is set for future power downs
|
|
*/
|
|
GREG32(PMU, OSC_HOLD_SET) = 0x1;
|
|
return 0;
|
|
}
|
|
|
|
/* Turn on DXO clock so we can write in the trim code in */
|
|
pmu_clock_en(PERIPH_XO);
|
|
|
|
/* Disable the RC Trim flops in the glitchless switch */
|
|
GWRITE_FIELD(PMU, OSC_CTRL, RC_TRIM_READYB, 0x1);
|
|
|
|
/* Power up the clock if not already powered up */
|
|
GREG32(PMU, CLRDIS) = 1 << GC_PMU_SETDIS_RC_TRIM_LSB;
|
|
|
|
/* Check for the trim code in the always-on domain
|
|
* before looking at the fuse
|
|
*/
|
|
if (GREAD_FIELD(XO, OSC_RC_STATUS, EN)) {
|
|
trim_code = GREAD_FIELD(XO, OSC_RC_STATUS, TRIM);
|
|
trimmed = 1;
|
|
} else if (GREAD_FIELD(PMU, FUSE_RD_RC_OSC_26MHZ, EN)) {
|
|
trim_code = GREAD_FIELD(PMU, FUSE_RD_RC_OSC_26MHZ, TRIM);
|
|
trimmed = 1;
|
|
} else {
|
|
if (skip_calibration) {
|
|
trim_code = GREAD_FIELD(XO, OSC_RC, TRIM);
|
|
trimmed = 0;
|
|
} else {
|
|
trim_code = pmu_calibrate_rc_trim();
|
|
trimmed = 1;
|
|
}
|
|
}
|
|
|
|
/* Write the trim code to dxo */
|
|
if (trimmed) {
|
|
/* clear the hold signal */
|
|
GREG32(XO, OSC_CLRHOLD) = GC_XO_OSC_CLRHOLD_RC_TRIM_MASK;
|
|
|
|
/* Write the trim code and enable the trim code */
|
|
GREG32(XO, OSC_RC) = (trim_code << GC_XO_OSC_RC_TRIM_LSB) |
|
|
(1 << GC_XO_OSC_RC_EN_LSB);
|
|
|
|
/* set the hold signal */
|
|
GREG32(XO, OSC_SETHOLD) = 1 << GC_XO_OSC_SETHOLD_RC_TRIM_LSB;
|
|
}
|
|
|
|
/* Enable the flops for RC TRIM in the glitchless switch */
|
|
GWRITE_FIELD(PMU, OSC_CTRL, RC_TRIM_READYB, 0x0);
|
|
|
|
/*
|
|
* Switch the select signal
|
|
* make sure the hold signal is clear
|
|
*/
|
|
GREG32(PMU, OSC_HOLD_CLR) = 0x1;
|
|
GREG32(PMU, OSC_SELECT) = GC_PMU_OSC_SELECT_RC_TRIM;
|
|
|
|
/* make sure the hold signal is set for future power downs */
|
|
GREG32(PMU, OSC_HOLD_SET) = 0x1;
|
|
|
|
return !trimmed;
|
|
}
|
|
|
|
/*
|
|
* Switch system clock to XO
|
|
* @returns The value of XO_OSC_XTL_FSM_STATUS. 0 = okay, 1 = error.
|
|
*/
|
|
uint32_t pmu_clock_switch_xo(void)
|
|
{
|
|
uint32_t osc_sel;
|
|
uint32_t trim_code, final_trim, fsm_done, fsm_status;
|
|
|
|
/* check which clock we are running on */
|
|
osc_sel = GREG32(PMU, OSC_SELECT_STAT);
|
|
|
|
if (osc_sel == GC_PMU_OSC_SELECT_XTL) {
|
|
/*
|
|
* already using the crystal so nothing to do here
|
|
* make sure the hold signal is set for future power downs
|
|
*/
|
|
GREG32(PMU, OSC_HOLD_SET) = 0x1;
|
|
return 0;
|
|
} else if (osc_sel == GC_PMU_OSC_SELECT_RC) {
|
|
/*
|
|
* RC untrimmed clock. We must go through
|
|
* the trimmed clock first to avoid glitching
|
|
*/
|
|
pmu_clock_switch_rc_trim(1);
|
|
}
|
|
|
|
/* Turn on DXO clock so we can write in the trim code in */
|
|
pmu_clock_en(PERIPH_XO);
|
|
|
|
/* Disable the XTL Clock */
|
|
GWRITE_FIELD(PMU, OSC_CTRL, XTL_READYB, 0x1);
|
|
|
|
/* Power up the clock if not already powered up */
|
|
GREG32(PMU, CLRDIS) = 1 << GC_PMU_CLRDIS_XTL_LSB;
|
|
|
|
/* Try to find the trim code */
|
|
trim_code = 0;
|
|
|
|
/*
|
|
* Check for the trim code in the always-on domain
|
|
* before looking at the fuse
|
|
*/
|
|
if (GREAD_FIELD(XO, OSC_XTL_TRIM_STAT, EN)) {
|
|
/* nothing to do */
|
|
trim_code = GREAD_FIELD(XO, OSC_XTL_TRIM_STAT, CODE);
|
|
|
|
} else if (GREAD_FIELD(PMU, FUSE_RD_XTL_OSC_26MHZ, EN)) {
|
|
|
|
/* push the fuse trim code as the saved trim code */
|
|
trim_code = GREAD_FIELD(PMU, FUSE_RD_XTL_OSC_26MHZ, TRIM);
|
|
|
|
/* make sure the hold signal is clear */
|
|
GREG32(XO, OSC_CLRHOLD) = 1 << GC_XO_OSC_CLRHOLD_XTL_LSB;
|
|
GREG32(XO, OSC_XTL_TRIM) =
|
|
(trim_code << GC_XO_OSC_XTL_TRIM_CODE_LSB)
|
|
| (0x1 << GC_XO_OSC_XTL_TRIM_EN_LSB);
|
|
} else {
|
|
/* Run the crystal FSM to calibrate the crystal trim */
|
|
fsm_done = GREG32(XO, OSC_XTL_FSM);
|
|
if (fsm_done & GC_XO_OSC_XTL_FSM_DONE_MASK) {
|
|
/*
|
|
* If FSM done is high, it means we already ran it
|
|
* so let's not run it again
|
|
* DO NOTHING
|
|
*/
|
|
} else {
|
|
/* reset FSM */
|
|
GREG32(XO, OSC_XTL_FSM_EN) = 0x0;
|
|
GREG32(XO, OSC_XTL_FSM_EN) = GC_XO_OSC_XTL_FSM_EN_KEY;
|
|
while (!(fsm_done & GC_XO_OSC_XTL_FSM_DONE_MASK))
|
|
fsm_done = GREG32(XO, OSC_XTL_FSM);
|
|
}
|
|
}
|
|
|
|
/* Check the status and final trim value */
|
|
/* max_trim = GREAD_FIELD(XO, OSC_XTL_FSM_CFG, TRIM_MAX); */
|
|
final_trim = GREAD_FIELD(XO, OSC_XTL_FSM, TRIM);
|
|
fsm_status = GREAD_FIELD(XO, OSC_XTL_FSM, STATUS);
|
|
|
|
/*
|
|
* Save the trim for future powerups
|
|
* make sure the hold signal is clear (may have already been cleared)
|
|
*/
|
|
GREG32(XO, OSC_CLRHOLD) = 1 << GC_XO_OSC_CLRHOLD_XTL_LSB;
|
|
GREG32(XO, OSC_XTL_TRIM) = (final_trim << GC_XO_OSC_XTL_TRIM_CODE_LSB) |
|
|
(1 << GC_XO_OSC_XTL_TRIM_EN_LSB);
|
|
|
|
/* make sure the hold signal is set for future power downs */
|
|
GREG32(XO, OSC_SETHOLD) = 1 << GC_XO_OSC_SETHOLD_XTL_LSB;
|
|
|
|
/* Enable the flops for XTL in the glitchless switch */
|
|
GWRITE_FIELD(PMU, OSC_CTRL, XTL_READYB, 0x0);
|
|
|
|
/*
|
|
* Switch the select signal
|
|
* make sure the hold signal is clear
|
|
*/
|
|
GREG32(PMU, OSC_HOLD_CLR) = 0x1;
|
|
GREG32(PMU, OSC_SELECT) = GC_PMU_OSC_SELECT_XTL;
|
|
|
|
/* make sure the hold signal is set for future power downs */
|
|
GREG32(PMU, OSC_HOLD_SET) = 0x1;
|
|
|
|
return !fsm_status;
|
|
}
|
|
|
|
/*
|
|
* Enter sleep mode and handle exiting from sleep mode
|
|
* @warning The CPU must be in RC no trim mode before calling this function
|
|
*/
|
|
void pmu_sleep(void)
|
|
{
|
|
uint32_t val;
|
|
|
|
/* Enable PMU sleep interrupts */
|
|
GREG32(PMU, ICTRL) = 1 << GC_PMU_ICTRL_SLEEP_LSB;
|
|
|
|
/* nvic_irq_en(GC_IRQNUM_PMU_PMUINT); */
|
|
|
|
/* Enable CPU SLEEPDEEP */
|
|
val = GREG32(M3, SCR);
|
|
GREG32(M3, SCR) = val | 0x4;
|
|
|
|
/* Enable WIC mode */
|
|
GREG32(PMU, SETWIC) = 1 << GC_PMU_SETWIC_PROC0_LSB;
|
|
|
|
/* Disable power domains for entering sleep mode */
|
|
GREG32(PMU, SETDIS) = (1 << GC_PMU_SETDIS_START_LSB) |
|
|
(1 << GC_PMU_SETDIS_VDDL_LSB) |
|
|
(1 << GC_PMU_SETDIS_VDDA_LSB) |
|
|
(1 << GC_PMU_SETDIS_VDDSRM_LSB) |
|
|
(1 << GC_PMU_SETDIS_BGAP_LSB) |
|
|
(1 << GC_PMU_SETDIS_VDDXO_LSB) |
|
|
(1 << GC_PMU_SETDIS_VDDXOLP_LSB) |
|
|
(1 << GC_PMU_SETDIS_XTL_LSB) |
|
|
(1 << GC_PMU_SETDIS_RC_TRIM_LSB) |
|
|
(1 << GC_PMU_SETDIS_RC_NOTRIM_LSB) |
|
|
(1 << GC_PMU_SETDIS_BATMON_LSB) |
|
|
(1 << GC_PMU_SETDIS_FST_BRNOUT_PWR_LSB) |
|
|
(1 << GC_PMU_SETDIS_FST_BRNOUT_LSB);
|
|
|
|
/* Wait for exit interrupt
|
|
* @todo Add code to disable all non-PMU interrupts.
|
|
*/
|
|
__asm__("wfi");
|
|
|
|
/* Disable WIC mode */
|
|
GREG32(PMU, CLRWIC) = 1 << GC_PMU_CLRWIC_PROC0_LSB;
|
|
|
|
/* Disable CPU SLEEPDEEP */
|
|
val = GREG32(M3, SCR);
|
|
GREG32(M3, SCR) = val & (~0x4);
|
|
|
|
/* Re-enable power domains */
|
|
GREG32(PMU, CLRDIS) = (1 << GC_PMU_CLRDIS_START_LSB) |
|
|
(1 << GC_PMU_CLRDIS_VDDL_LSB) |
|
|
(1 << GC_PMU_CLRDIS_VDDA_LSB) |
|
|
(1 << GC_PMU_CLRDIS_VDDSRM_LSB) |
|
|
(1 << GC_PMU_CLRDIS_VDDIOF_LSB) |
|
|
(1 << GC_PMU_CLRDIS_BGAP_LSB) |
|
|
(1 << GC_PMU_CLRDIS_VDDXO_LSB);
|
|
|
|
#ifdef __FIX_ME__
|
|
GREG32(PMU, CLRDIS) = (1 << GC_PMU_CLRDIS_START_LSB) |
|
|
(1 << GC_PMU_CLRDIS_VDDL_LSB) |
|
|
(1 << GC_PMU_CLRDIS_VDDA_LSB) |
|
|
(1 << GC_PMU_CLRDIS_VDDSRM_LSB) |
|
|
(1 << GC_PMU_CLRDIS_BGAP_LSB) |
|
|
(1 << GC_PMU_CLRDIS_VDDXO_LSB) |
|
|
(1 << GC_PMU_CLRDIS_VDDXOLP_LSB) |
|
|
(1 << GC_PMU_CLRDIS_XTL_LSB) |
|
|
(1 << GC_PMU_CLRDIS_RC_TRIM_LSB) |
|
|
(1 << GC_PMU_CLRDIS_RC_NOTRIM_LSB) |
|
|
(1 << GC_PMU_CLRDIS_BATMON_LSB) |
|
|
(1 << GC_PMU_CLRDIS_FST_BRNOUT_PWR_LSB) |
|
|
(1 << GC_PMU_CLRDIS_FST_BRNOUT_LSB);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Enter hibernate mode
|
|
* This function does not return. The powerdown exit event will
|
|
* cause the CPU to begin executing the system / app bootloader.
|
|
* @warning The CPU must be in RC no trim mode
|
|
*/
|
|
void pmu_hibernate(void)
|
|
{
|
|
/* Turn off power to everything except retention domains */
|
|
GREG32(PMU, SETDIS) = (1 << GC_PMU_SETDIS_START_LSB) |
|
|
(1 << GC_PMU_SETDIS_VDDL_LSB) |
|
|
(1 << GC_PMU_SETDIS_VDDA_LSB) |
|
|
(1 << GC_PMU_SETDIS_VDDSRM_LSB) |
|
|
(1 << GC_PMU_SETDIS_VDDIOF_LSB) |
|
|
(1 << GC_PMU_SETDIS_VDDLK_LSB) |
|
|
(1 << GC_PMU_SETDIS_VDDSK_LSB) |
|
|
(1 << GC_PMU_SETDIS_BIAS_LSB) |
|
|
(1 << GC_PMU_SETDIS_BGAP_LSB) |
|
|
(1 << GC_PMU_SETDIS_VDDXO_LSB) |
|
|
(1 << GC_PMU_SETDIS_VDDXOLP_LSB) |
|
|
(1 << GC_PMU_SETDIS_XTL_LSB) |
|
|
(1 << GC_PMU_SETDIS_RC_TRIM_LSB) |
|
|
(1 << GC_PMU_SETDIS_RC_NOTRIM_LSB) |
|
|
(1 << GC_PMU_SETDIS_BATMON_LSB) |
|
|
(1 << GC_PMU_SETDIS_FST_BRNOUT_PWR_LSB) |
|
|
(1 << GC_PMU_SETDIS_FST_BRNOUT_LSB);
|
|
|
|
/* Wait for powerdown */
|
|
for (;;)
|
|
__asm__("wfi");
|
|
}
|
|
|
|
/*
|
|
* Exit hibernate mode
|
|
* This function should be called after a powerdown exit event.
|
|
* It handles turning the power domains back on.
|
|
* Clocks will be left in RC no trim.
|
|
*/
|
|
void pmu_hibernate_exit(void)
|
|
{
|
|
/* Turn on power to everything */
|
|
GREG32(PMU, CLRDIS) = (1 << GC_PMU_CLRDIS_START_LSB) |
|
|
(1 << GC_PMU_CLRDIS_VDDL_LSB) |
|
|
(1 << GC_PMU_CLRDIS_VDDA_LSB) |
|
|
(1 << GC_PMU_CLRDIS_VDDSRM_LSB) |
|
|
(1 << GC_PMU_CLRDIS_VDDIOF_LSB) |
|
|
(1 << GC_PMU_CLRDIS_VDDLK_LSB) |
|
|
(1 << GC_PMU_CLRDIS_VDDSK_LSB) |
|
|
(1 << GC_PMU_CLRDIS_BIAS_LSB) |
|
|
(1 << GC_PMU_CLRDIS_BGAP_LSB) |
|
|
(1 << GC_PMU_CLRDIS_VDDXO_LSB) |
|
|
(1 << GC_PMU_CLRDIS_VDDXOLP_LSB) |
|
|
(1 << GC_PMU_CLRDIS_XTL_LSB) |
|
|
(1 << GC_PMU_CLRDIS_RC_TRIM_LSB) |
|
|
(1 << GC_PMU_CLRDIS_RC_NOTRIM_LSB) |
|
|
(1 << GC_PMU_CLRDIS_BATMON_LSB) |
|
|
(1 << GC_PMU_CLRDIS_FST_BRNOUT_PWR_LSB) |
|
|
(1 << GC_PMU_CLRDIS_FST_BRNOUT_LSB);
|
|
}
|
|
|
|
/*
|
|
* Enter powerdown mode
|
|
* This function does not return. The powerdown exit event will
|
|
* cause the CPU to begin executing the system / app bootloader.
|
|
* @warning The CPU must be in RC no trim mode
|
|
*/
|
|
void pmu_powerdown(void)
|
|
{
|
|
/* Turn off power to everything */
|
|
GREG32(PMU, SETDIS) = (1 << GC_PMU_SETDIS_START_LSB) |
|
|
(1 << GC_PMU_SETDIS_VDDL_LSB) |
|
|
(1 << GC_PMU_SETDIS_VDDA_LSB) |
|
|
(1 << GC_PMU_SETDIS_VDDSRM_LSB) |
|
|
(1 << GC_PMU_SETDIS_VDDIOF_LSB) |
|
|
(1 << GC_PMU_SETDIS_VDDLK_LSB) |
|
|
(1 << GC_PMU_SETDIS_VDDSK_LSB) |
|
|
(1 << GC_PMU_SETDIS_VDDSRK_LSB) |
|
|
(1 << GC_PMU_SETDIS_RETCOMPREF_LSB) |
|
|
(1 << GC_PMU_SETDIS_BIAS_LSB) |
|
|
(1 << GC_PMU_SETDIS_BGAP_LSB) |
|
|
(1 << GC_PMU_SETDIS_VDDXO_LSB) |
|
|
(1 << GC_PMU_SETDIS_VDDXOLP_LSB) |
|
|
(1 << GC_PMU_SETDIS_XTL_LSB) |
|
|
(1 << GC_PMU_SETDIS_RC_TRIM_LSB) |
|
|
(1 << GC_PMU_SETDIS_RC_NOTRIM_LSB) |
|
|
(1 << GC_PMU_SETDIS_BATMON_LSB) |
|
|
(1 << GC_PMU_SETDIS_FST_BRNOUT_PWR_LSB) |
|
|
(1 << GC_PMU_SETDIS_FST_BRNOUT_LSB);
|
|
|
|
/* Wait for powerdown */
|
|
for (;;)
|
|
__asm__("wfi");
|
|
}
|
|
|
|
/*
|
|
* Exit powerdown mode
|
|
* This function should be called after a powerdown exit event.
|
|
* It handles turning the power domains back on.
|
|
* Clocks will be left in RC no trim.
|
|
*/
|
|
void pmu_powerdown_exit(void)
|
|
{
|
|
/* Turn on power to everything */
|
|
GREG32(PMU, CLRDIS) = (1 << GC_PMU_CLRDIS_START_LSB) |
|
|
(1 << GC_PMU_CLRDIS_VDDL_LSB) |
|
|
(1 << GC_PMU_CLRDIS_VDDA_LSB) |
|
|
(1 << GC_PMU_CLRDIS_VDDSRM_LSB) |
|
|
(1 << GC_PMU_CLRDIS_VDDIOF_LSB) |
|
|
(1 << GC_PMU_CLRDIS_VDDLK_LSB) |
|
|
(1 << GC_PMU_CLRDIS_VDDSK_LSB) |
|
|
(1 << GC_PMU_CLRDIS_VDDSRK_LSB) |
|
|
(1 << GC_PMU_CLRDIS_RETCOMPREF_LSB) |
|
|
(1 << GC_PMU_CLRDIS_BIAS_LSB) |
|
|
(1 << GC_PMU_CLRDIS_BGAP_LSB) |
|
|
(1 << GC_PMU_CLRDIS_VDDXO_LSB) |
|
|
(1 << GC_PMU_CLRDIS_VDDXOLP_LSB) |
|
|
(1 << GC_PMU_CLRDIS_XTL_LSB) |
|
|
(1 << GC_PMU_CLRDIS_RC_TRIM_LSB) |
|
|
(1 << GC_PMU_CLRDIS_RC_NOTRIM_LSB) |
|
|
(1 << GC_PMU_CLRDIS_BATMON_LSB) |
|
|
(1 << GC_PMU_CLRDIS_FST_BRNOUT_PWR_LSB) |
|
|
(1 << GC_PMU_CLRDIS_FST_BRNOUT_LSB);
|
|
}
|
|
|
|
/**
|
|
* Handle PMU interrupt
|
|
*/
|
|
void pmu_interrupt(void)
|
|
{
|
|
/* TBD */
|
|
}
|
|
DECLARE_IRQ(GC_IRQNUM_PMU_PMUINT, pmu_interrupt, 1);
|