mirror of
https://github.com/Telecominfraproject/OpenCellular.git
synced 2026-01-08 16:41:55 +00:00
Motion sense calculations do not require huge amounts of precision, so
fixed point is plenty accurate. And fixed point works on Cortex-M0,
which lacks a FPU.
BUG=chrome-os-partner:36126
BRANCH=minnie (samus already works with the FPU, but could grab this if we
want additional testing)
TEST=manual
1. Boot system
2. At EC console: accelinfo on 250
3. Move lid through several different angles (30 degrees to max open) and
see that it updates correctly and relatively smoothly. A few degrees
of angle jitter is normal.
4. At several angles, rotate the chromebook around and see that the lid
angle remains relatively stable.
5. If the hinge is made normal to the ground (or within 15 degrees of
vertical), the angle should read 500, since the acceleration vectors
don't yield good results in that orientation (for either fixed or float
math).
And run 'make buildall -j', which tests arc_cos() and lid angle calculations
Change-Id: I70a0d08b8914629a3e21ae5578cbe8e50f29ad68
Signed-off-by: Randall Spangler <rspangler@chromium.org>
Reviewed-on: https://chromium-review.googlesource.com/244116
Reviewed-by: Alec Berg <alecaberg@chromium.org>
196 lines
5.6 KiB
C
196 lines
5.6 KiB
C
/* Copyright (c) 2014 The Chromium OS Authors. All rights reserved.
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
/* Motion sense module to read from various motion sensors. */
|
|
|
|
#include "accelgyro.h"
|
|
#include "chipset.h"
|
|
#include "common.h"
|
|
#include "console.h"
|
|
#include "gesture.h"
|
|
#include "hooks.h"
|
|
#include "host_command.h"
|
|
#include "lid_angle.h"
|
|
#include "math_util.h"
|
|
#include "motion_lid.h"
|
|
#include "motion_sense.h"
|
|
#include "power.h"
|
|
#include "timer.h"
|
|
#include "task.h"
|
|
#include "util.h"
|
|
|
|
/* Console output macros */
|
|
#define CPUTS(outstr) cputs(CC_MOTION_LID, outstr)
|
|
#define CPRINTS(format, args...) cprints(CC_MOTION_LID, format, ## args)
|
|
#define CPRINTF(format, args...) cprintf(CC_MOTION_LID, format, ## args)
|
|
|
|
/* For vector_3_t, define which coordinates are in which location. */
|
|
enum {
|
|
X, Y, Z
|
|
};
|
|
|
|
/* Current acceleration vectors and current lid angle. */
|
|
static int lid_angle_deg;
|
|
static int lid_angle_is_reliable;
|
|
|
|
/*
|
|
* Angle threshold for how close the hinge aligns with gravity before
|
|
* considering the lid angle calculation unreliable. For computational
|
|
* efficiency, value is given unit-less, so if you want the threshold to be
|
|
* at 15 degrees, the value would be cos(15 deg) = 0.96593.
|
|
*/
|
|
#define HINGE_ALIGNED_WITH_GRAVITY_THRESHOLD FLOAT_TO_FP(0.96593)
|
|
|
|
|
|
/* Pointer to constant acceleration orientation data. */
|
|
const struct accel_orientation * const p_acc_orient = &acc_orient;
|
|
|
|
struct motion_sensor_t *accel_base = &motion_sensors[CONFIG_SENSOR_BASE];
|
|
struct motion_sensor_t *accel_lid = &motion_sensors[CONFIG_SENSOR_LID];
|
|
|
|
/**
|
|
* Calculate the lid angle using two acceleration vectors, one recorded in
|
|
* the base and one in the lid.
|
|
*
|
|
* @param base Base accel vector
|
|
* @param lid Lid accel vector
|
|
* @param lid_angle Pointer to location to store lid angle result
|
|
*
|
|
* @return flag representing if resulting lid angle calculation is reliable.
|
|
*/
|
|
static int calculate_lid_angle(const vector_3_t base, const vector_3_t lid,
|
|
int *lid_angle)
|
|
{
|
|
vector_3_t v;
|
|
fp_t ang_lid_to_base, cos_lid_90, cos_lid_270;
|
|
fp_t lid_to_base, base_to_hinge;
|
|
fp_t denominator;
|
|
int reliable = 1;
|
|
|
|
/*
|
|
* The angle between lid and base is:
|
|
* acos((cad(base, lid) - cad(base, hinge)^2) /(1 - cad(base, hinge)^2))
|
|
* where cad() is the cosine_of_angle_diff() function.
|
|
*
|
|
* Make sure to check for divide by 0.
|
|
*/
|
|
lid_to_base = cosine_of_angle_diff(base, lid);
|
|
base_to_hinge = cosine_of_angle_diff(base, p_acc_orient->hinge_axis);
|
|
|
|
/*
|
|
* If hinge aligns too closely with gravity, then result may be
|
|
* unreliable.
|
|
*/
|
|
if (fp_abs(base_to_hinge) > HINGE_ALIGNED_WITH_GRAVITY_THRESHOLD)
|
|
reliable = 0;
|
|
|
|
base_to_hinge = fp_sq(base_to_hinge);
|
|
|
|
/* Check divide by 0. */
|
|
denominator = FLOAT_TO_FP(1.0) - base_to_hinge;
|
|
if (fp_abs(denominator) < FLOAT_TO_FP(0.01)) {
|
|
*lid_angle = 0;
|
|
return 0;
|
|
}
|
|
|
|
ang_lid_to_base = arc_cos(fp_div(lid_to_base - base_to_hinge,
|
|
denominator));
|
|
|
|
/*
|
|
* The previous calculation actually has two solutions, a positive and
|
|
* a negative solution. To figure out the sign of the answer, calculate
|
|
* the cosine of the angle between the actual lid angle and the
|
|
* estimated vector if the lid were open to 90 deg, cos_lid_90. Also
|
|
* calculate the cosine of the angle between the actual lid angle and
|
|
* the estimated vector if the lid were open to 270 deg,
|
|
* cos_lid_270. The smaller of the two angles represents which one is
|
|
* closer. If the lid is closer to the estimated 270 degree vector then
|
|
* the result is negative, otherwise it is positive.
|
|
*/
|
|
rotate(base, p_acc_orient->rot_hinge_90, v);
|
|
cos_lid_90 = cosine_of_angle_diff(v, lid);
|
|
rotate(v, p_acc_orient->rot_hinge_180, v);
|
|
cos_lid_270 = cosine_of_angle_diff(v, lid);
|
|
|
|
/*
|
|
* Note that cos_lid_90 and cos_lid_270 are not in degrees, because
|
|
* the arc_cos() was never performed. But, since arc_cos() is
|
|
* monotonically decreasing, we can do this comparison without ever
|
|
* taking arc_cos(). But, since the function is monotonically
|
|
* decreasing, the logic of this comparison is reversed.
|
|
*/
|
|
if (cos_lid_270 > cos_lid_90)
|
|
ang_lid_to_base = -ang_lid_to_base;
|
|
|
|
/* Place lid angle between 0 and 360 degrees. */
|
|
if (ang_lid_to_base < 0)
|
|
ang_lid_to_base += FLOAT_TO_FP(360);
|
|
|
|
/*
|
|
* Round to nearest int by adding 0.5. Note, only works because lid
|
|
* angle is known to be positive.
|
|
*/
|
|
*lid_angle = FP_TO_INT(ang_lid_to_base + FLOAT_TO_FP(0.5));
|
|
|
|
return reliable;
|
|
}
|
|
|
|
int motion_lid_get_angle(void)
|
|
{
|
|
if (lid_angle_is_reliable)
|
|
return lid_angle_deg;
|
|
else
|
|
return LID_ANGLE_UNRELIABLE;
|
|
}
|
|
|
|
/*
|
|
* Calculate lid angle and massage the results
|
|
*/
|
|
void motion_lid_calc(void)
|
|
{
|
|
/* Calculate angle of lid accel. */
|
|
lid_angle_is_reliable = calculate_lid_angle(
|
|
accel_base->xyz,
|
|
accel_lid->xyz,
|
|
&lid_angle_deg);
|
|
|
|
#ifdef CONFIG_LID_ANGLE_KEY_SCAN
|
|
lidangle_keyscan_update(motion_lid_get_angle());
|
|
#endif
|
|
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* Host commands */
|
|
|
|
|
|
int host_cmd_motion_lid(struct host_cmd_handler_args *args)
|
|
{
|
|
const struct ec_params_motion_sense *in = args->params;
|
|
struct ec_response_motion_sense *out = args->response;
|
|
|
|
switch (in->cmd) {
|
|
case MOTIONSENSE_CMD_KB_WAKE_ANGLE:
|
|
#ifdef CONFIG_LID_ANGLE_KEY_SCAN
|
|
/* Set new keyboard wake lid angle if data arg has value. */
|
|
if (in->kb_wake_angle.data != EC_MOTION_SENSE_NO_VALUE)
|
|
lid_angle_set_kb_wake_angle(in->kb_wake_angle.data);
|
|
|
|
out->kb_wake_angle.ret = lid_angle_get_kb_wake_angle();
|
|
#else
|
|
out->kb_wake_angle.ret = 0;
|
|
#endif
|
|
args->response_size = sizeof(out->kb_wake_angle);
|
|
|
|
break;
|
|
|
|
default:
|
|
return EC_RES_INVALID_PARAM;
|
|
}
|
|
|
|
return EC_RES_SUCCESS;
|
|
}
|
|
|