Files
OpenCellular/firmware/lib/vboot_kernel.c
Randall Spangler 9619112a57 Vboot wrapper - add recovery reason, refactor timing
Pressing Tab at a firmware screen now displays real data, including
the recovery reason, HWID, and contents of VbNvStorage.

Entry point start/end time tracking in VbSharedData now refers to the
new wrapper APIs.

Added capability for calling firmware to request recovery mode (for
example, if it's unable to initialize RAM, can't find the SSD, etc.).
Previously, calling firmware had no (good) way to do this other than
faking the recovery button being pressed.

BUG=chromium-os:17018
TEST=emerge on x86 and tegra2_seaboard

Change-Id: I7d377f279842b30a10d945d13571c41c464633f1
Reviewed-on: http://gerrit.chromium.org/gerrit/3814
Reviewed-by: Simon Glass <sjg@chromium.org>
Tested-by: Randall Spangler <rspangler@chromium.org>
2011-07-08 16:19:07 -07:00

625 lines
22 KiB
C

/* Copyright (c) 2011 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*
* Functions for loading a kernel from disk.
* (Firmware portion)
*/
#include "cgptlib.h"
#include "cgptlib_internal.h"
#include "gbb_header.h"
#include "load_kernel_fw.h"
#include "rollback_index.h"
#include "utility.h"
#include "vboot_api.h"
#include "vboot_common.h"
#include "vboot_kernel.h"
#define KBUF_SIZE 65536 /* Bytes to read at start of kernel partition */
#define LOWEST_TPM_VERSION 0xffffffff
typedef enum BootMode {
kBootRecovery = 0, /* Recovery firmware, regardless of dev switch position */
kBootNormal = 1, /* Normal firmware */
kBootDev = 2 /* Dev firmware AND dev switch is on */
} BootMode;
/* Allocates and reads GPT data from the drive. The sector_bytes and
* drive_sectors fields should be filled on input. The primary and
* secondary header and entries are filled on output.
*
* Returns 0 if successful, 1 if error. */
int AllocAndReadGptData(VbExDiskHandle_t disk_handle, GptData* gptdata) {
uint64_t entries_sectors = TOTAL_ENTRIES_SIZE / gptdata->sector_bytes;
/* No data to be written yet */
gptdata->modified = 0;
/* Allocate all buffers */
gptdata->primary_header = (uint8_t*)VbExMalloc(gptdata->sector_bytes);
gptdata->secondary_header = (uint8_t*)VbExMalloc(gptdata->sector_bytes);
gptdata->primary_entries = (uint8_t*)VbExMalloc(TOTAL_ENTRIES_SIZE);
gptdata->secondary_entries = (uint8_t*)VbExMalloc(TOTAL_ENTRIES_SIZE);
if (gptdata->primary_header == NULL || gptdata->secondary_header == NULL ||
gptdata->primary_entries == NULL || gptdata->secondary_entries == NULL)
return 1;
/* Read data from the drive, skipping the protective MBR */
if (0 != VbExDiskRead(disk_handle, 1, 1, gptdata->primary_header))
return 1;
if (0 != VbExDiskRead(disk_handle, 2, entries_sectors,
gptdata->primary_entries))
return 1;
if (0 != VbExDiskRead(disk_handle,
gptdata->drive_sectors - entries_sectors - 1,
entries_sectors, gptdata->secondary_entries))
return 1;
if (0 != VbExDiskRead(disk_handle, gptdata->drive_sectors - 1, 1,
gptdata->secondary_header))
return 1;
return 0;
}
/* Writes any changes for the GPT data back to the drive, then frees
* the buffers.
*
* Returns 0 if successful, 1 if error. */
int WriteAndFreeGptData(VbExDiskHandle_t disk_handle, GptData* gptdata) {
uint64_t entries_sectors = TOTAL_ENTRIES_SIZE / gptdata->sector_bytes;
if (gptdata->primary_header) {
if (gptdata->modified & GPT_MODIFIED_HEADER1) {
VBDEBUG(("Updating GPT header 1\n"));
if (0 != VbExDiskWrite(disk_handle, 1, 1, gptdata->primary_header))
return 1;
}
VbExFree(gptdata->primary_header);
}
if (gptdata->primary_entries) {
if (gptdata->modified & GPT_MODIFIED_ENTRIES1) {
VBDEBUG(("Updating GPT entries 1\n"));
if (0 != VbExDiskWrite(disk_handle, 2, entries_sectors,
gptdata->primary_entries))
return 1;
}
VbExFree(gptdata->primary_entries);
}
if (gptdata->secondary_entries) {
if (gptdata->modified & GPT_MODIFIED_ENTRIES2) {
VBDEBUG(("Updating GPT header 2\n"));
if (0 != VbExDiskWrite(disk_handle,
gptdata->drive_sectors - entries_sectors - 1,
entries_sectors, gptdata->secondary_entries))
return 1;
}
VbExFree(gptdata->secondary_entries);
}
if (gptdata->secondary_header) {
if (gptdata->modified & GPT_MODIFIED_HEADER2) {
VBDEBUG(("Updating GPT entries 2\n"));
if (0 != VbExDiskWrite(disk_handle, gptdata->drive_sectors - 1, 1,
gptdata->secondary_header))
return 1;
}
VbExFree(gptdata->secondary_header);
}
/* Success */
return 0;
}
/* disable MSVC warning on const logical expression (as in } while(0);) */
__pragma(warning(disable: 4127))
int LoadKernel(LoadKernelParams* params) {
VbSharedDataHeader* shared = (VbSharedDataHeader*)params->shared_data_blob;
VbSharedDataKernelCall* shcall = NULL;
VbNvContext* vnc = params->nv_context;
GoogleBinaryBlockHeader* gbb = (GoogleBinaryBlockHeader*)params->gbb_data;
VbPublicKey* kernel_subkey;
GptData gpt;
uint64_t part_start, part_size;
uint64_t blba;
uint64_t kbuf_sectors;
uint8_t* kbuf = NULL;
int found_partitions = 0;
int good_partition = -1;
int good_partition_key_block_valid = 0;
uint32_t tpm_version = 0;
uint64_t lowest_version = LOWEST_TPM_VERSION;
int rec_switch, dev_switch;
BootMode boot_mode;
uint32_t test_err = 0;
uint32_t status;
int retval = LOAD_KERNEL_RECOVERY;
int recovery = VBNV_RECOVERY_RO_UNSPECIFIED;
/* Setup NV storage */
VbNvSetup(vnc);
/* Sanity Checks */
if (!params ||
!params->bytes_per_lba ||
!params->ending_lba ||
!params->kernel_buffer ||
!params->kernel_buffer_size) {
VBDEBUG(("LoadKernel() called with invalid params\n"));
goto LoadKernelExit;
}
/* Clear output params in case we fail */
params->partition_number = 0;
params->bootloader_address = 0;
params->bootloader_size = 0;
/* Calculate switch positions and boot mode */
rec_switch = (BOOT_FLAG_RECOVERY & params->boot_flags ? 1 : 0);
dev_switch = (BOOT_FLAG_DEVELOPER & params->boot_flags ? 1 : 0);
if (rec_switch)
boot_mode = kBootRecovery;
else if (BOOT_FLAG_DEV_FIRMWARE & params->boot_flags)
boot_mode = kBootDev;
else {
/* Normal firmware */
boot_mode = kBootNormal;
dev_switch = 0; /* Always do a fully verified boot */
}
/* Set up tracking for this call. This wraps around if called many times,
* so we need to initialize the call entry each time. */
shcall = shared->lk_calls + (shared->lk_call_count
& (VBSD_MAX_KERNEL_CALLS - 1));
Memset(shcall, 0, sizeof(VbSharedDataKernelCall));
shcall->boot_flags = (uint32_t)params->boot_flags;
shcall->boot_mode = boot_mode;
shcall->sector_size = (uint32_t)params->bytes_per_lba;
shcall->sector_count = params->ending_lba + 1;
shared->lk_call_count++;
/* Handle test errors */
VbNvGet(vnc, VBNV_TEST_ERROR_FUNC, &test_err);
if (VBNV_TEST_ERROR_LOAD_KERNEL == test_err) {
/* Get error code */
VbNvGet(vnc, VBNV_TEST_ERROR_NUM, &test_err);
shcall->test_error_num = (uint8_t)test_err;
/* Clear test params so we don't repeat the error */
VbNvSet(vnc, VBNV_TEST_ERROR_FUNC, 0);
VbNvSet(vnc, VBNV_TEST_ERROR_NUM, 0);
/* Handle error codes */
switch (test_err) {
case LOAD_KERNEL_RECOVERY:
recovery = VBNV_RECOVERY_RW_TEST_LK;
goto LoadKernelExit;
case LOAD_KERNEL_NOT_FOUND:
case LOAD_KERNEL_INVALID:
case LOAD_KERNEL_REBOOT:
retval = test_err;
goto LoadKernelExit;
default:
break;
}
}
/* Initialization */
blba = params->bytes_per_lba;
kbuf_sectors = KBUF_SIZE / blba;
if (0 == kbuf_sectors) {
VBDEBUG(("LoadKernel() called with sector size > KBUF_SIZE\n"));
goto LoadKernelExit;
}
if (kBootDev == boot_mode && !dev_switch) {
/* Dev firmware should be signed such that it never boots with the dev
* switch is off; so something is terribly wrong. */
VBDEBUG(("LoadKernel() called with dev firmware but dev switch off\n"));
shcall->check_result = VBSD_LKC_CHECK_DEV_SWITCH_MISMATCH;
recovery = VBNV_RECOVERY_RW_DEV_MISMATCH;
goto LoadKernelExit;
}
if (kBootRecovery == boot_mode) {
/* Use the recovery key to verify the kernel */
kernel_subkey = (VbPublicKey*)((uint8_t*)gbb + gbb->recovery_key_offset);
/* Let the TPM know if we're in recovery mode */
if (0 != RollbackKernelRecovery(dev_switch)) {
VBDEBUG(("Error setting up TPM for recovery kernel\n"));
shcall->flags |= VBSD_LK_FLAG_REC_TPM_INIT_ERROR;
/* Ignore return code, since we need to boot recovery mode to
* fix the TPM. */
}
/* Read the key indices from the TPM; ignore any errors */
RollbackFirmwareRead(&shared->fw_version_tpm);
RollbackKernelRead(&shared->kernel_version_tpm);
} else {
/* Use the kernel subkey passed from LoadFirmware(). */
kernel_subkey = &shared->kernel_subkey;
/* Read current kernel key index from TPM. Assumes TPM is already
* initialized. */
status = RollbackKernelRead(&tpm_version);
if (0 != status) {
VBDEBUG(("Unable to get kernel versions from TPM\n"));
if (status == TPM_E_MUST_REBOOT)
retval = LOAD_KERNEL_REBOOT;
else
recovery = VBNV_RECOVERY_RW_TPM_ERROR;
goto LoadKernelExit;
}
shared->kernel_version_tpm = tpm_version;
}
do {
/* Read GPT data */
gpt.sector_bytes = (uint32_t)blba;
gpt.drive_sectors = params->ending_lba + 1;
if (0 != AllocAndReadGptData(params->disk_handle, &gpt)) {
VBDEBUG(("Unable to read GPT data\n"));
shcall->check_result = VBSD_LKC_CHECK_GPT_READ_ERROR;
break;
}
/* Initialize GPT library */
if (GPT_SUCCESS != GptInit(&gpt)) {
VBDEBUG(("Error parsing GPT\n"));
shcall->check_result = VBSD_LKC_CHECK_GPT_PARSE_ERROR;
break;
}
/* Allocate kernel header buffers */
kbuf = (uint8_t*)VbExMalloc(KBUF_SIZE);
if (!kbuf)
break;
/* Loop over candidate kernel partitions */
while (GPT_SUCCESS == GptNextKernelEntry(&gpt, &part_start, &part_size)) {
VbSharedDataKernelPart* shpart = NULL;
VbKeyBlockHeader* key_block;
VbKernelPreambleHeader* preamble;
RSAPublicKey* data_key = NULL;
uint64_t key_version;
uint64_t combined_version;
uint64_t body_offset;
uint64_t body_offset_sectors;
uint64_t body_sectors;
int key_block_valid = 1;
VBDEBUG(("Found kernel entry at %" PRIu64 " size %" PRIu64 "\n",
part_start, part_size));
/* Set up tracking for this partition. This wraps around if called
* many times, so initialize the partition entry each time. */
shpart = shcall->parts + (shcall->kernel_parts_found
& (VBSD_MAX_KERNEL_PARTS - 1));
Memset(shpart, 0, sizeof(VbSharedDataKernelPart));
shpart->sector_start = part_start;
shpart->sector_count = part_size;
/* TODO: GPT partitions start at 1, but cgptlib starts them at 0.
* Adjust here, until cgptlib is fixed. */
shpart->gpt_index = (uint8_t)(gpt.current_kernel + 1);
shcall->kernel_parts_found++;
/* Found at least one kernel partition. */
found_partitions++;
/* Read the first part of the kernel partition. */
if (part_size < kbuf_sectors) {
VBDEBUG(("Partition too small to hold kernel.\n"));
shpart->check_result = VBSD_LKP_CHECK_TOO_SMALL;
goto bad_kernel;
}
if (0 != VbExDiskRead(params->disk_handle, part_start, kbuf_sectors,
kbuf)) {
VBDEBUG(("Unable to read start of partition.\n"));
shpart->check_result = VBSD_LKP_CHECK_READ_START;
goto bad_kernel;
}
/* Verify the key block. */
key_block = (VbKeyBlockHeader*)kbuf;
if (0 != KeyBlockVerify(key_block, KBUF_SIZE, kernel_subkey, 0)) {
VBDEBUG(("Verifying key block signature failed.\n"));
shpart->check_result = VBSD_LKP_CHECK_KEY_BLOCK_SIG;
key_block_valid = 0;
/* If we're not in developer mode, this kernel is bad. */
if (kBootDev != boot_mode)
goto bad_kernel;
/* In developer mode, we can continue if the SHA-512 hash of the key
* block is valid. */
if (0 != KeyBlockVerify(key_block, KBUF_SIZE, kernel_subkey, 1)) {
VBDEBUG(("Verifying key block hash failed.\n"));
shpart->check_result = VBSD_LKP_CHECK_KEY_BLOCK_HASH;
goto bad_kernel;
}
}
/* Check the key block flags against the current boot mode. */
if (!(key_block->key_block_flags &
(dev_switch ? KEY_BLOCK_FLAG_DEVELOPER_1 :
KEY_BLOCK_FLAG_DEVELOPER_0))) {
VBDEBUG(("Key block developer flag mismatch.\n"));
shpart->check_result = VBSD_LKP_CHECK_DEV_MISMATCH;
key_block_valid = 0;
}
if (!(key_block->key_block_flags &
(rec_switch ? KEY_BLOCK_FLAG_RECOVERY_1 :
KEY_BLOCK_FLAG_RECOVERY_0))) {
VBDEBUG(("Key block recovery flag mismatch.\n"));
shpart->check_result = VBSD_LKP_CHECK_REC_MISMATCH;
key_block_valid = 0;
}
/* Check for rollback of key version except in recovery mode. */
key_version = key_block->data_key.key_version;
if (kBootRecovery != boot_mode) {
if (key_version < (tpm_version >> 16)) {
VBDEBUG(("Key version too old.\n"));
shpart->check_result = VBSD_LKP_CHECK_KEY_ROLLBACK;
key_block_valid = 0;
}
}
/* If we're not in developer mode, require the key block to be valid. */
if (kBootDev != boot_mode && !key_block_valid) {
VBDEBUG(("Key block is invalid.\n"));
goto bad_kernel;
}
/* Get the key for preamble/data verification from the key block. */
data_key = PublicKeyToRSA(&key_block->data_key);
if (!data_key) {
VBDEBUG(("Data key bad.\n"));
shpart->check_result = VBSD_LKP_CHECK_DATA_KEY_PARSE;
goto bad_kernel;
}
/* Verify the preamble, which follows the key block */
preamble = (VbKernelPreambleHeader*)(kbuf + key_block->key_block_size);
if ((0 != VerifyKernelPreamble(preamble,
KBUF_SIZE - key_block->key_block_size,
data_key))) {
VBDEBUG(("Preamble verification failed.\n"));
shpart->check_result = VBSD_LKP_CHECK_VERIFY_PREAMBLE;
goto bad_kernel;
}
/* If the key block is valid and we're not in recovery mode, check for
* rollback of the kernel version. */
combined_version = ((key_version << 16) |
(preamble->kernel_version & 0xFFFF));
shpart->combined_version = (uint32_t)combined_version;
if (key_block_valid && kBootRecovery != boot_mode) {
if (combined_version < tpm_version) {
VBDEBUG(("Kernel version too low.\n"));
shpart->check_result = VBSD_LKP_CHECK_KERNEL_ROLLBACK;
/* If we're not in developer mode, kernel version must be valid. */
if (kBootDev != boot_mode)
goto bad_kernel;
}
}
VBDEBUG(("Kernel preamble is good.\n"));
shpart->check_result = VBSD_LKP_CHECK_PREAMBLE_VALID;
/* Check for lowest version from a valid header. */
if (key_block_valid && lowest_version > combined_version)
lowest_version = combined_version;
else {
VBDEBUG(("Key block valid: %d\n", key_block_valid));
VBDEBUG(("Combined version: %" PRIu64 "\n", combined_version));
}
/* If we already have a good kernel, no need to read another
* one; we only needed to look at the versions to check for
* rollback. So skip to the next kernel preamble. */
if (-1 != good_partition)
continue;
/* Verify body load address matches what we expect */
if ((preamble->body_load_address != (size_t)params->kernel_buffer) &&
!(params->boot_flags & BOOT_FLAG_SKIP_ADDR_CHECK)) {
VBDEBUG(("Wrong body load address.\n"));
shpart->check_result = VBSD_LKP_CHECK_BODY_ADDRESS;
goto bad_kernel;
}
/* Verify kernel body starts at a multiple of the sector size. */
body_offset = key_block->key_block_size + preamble->preamble_size;
if (0 != body_offset % blba) {
VBDEBUG(("Kernel body not at multiple of sector size.\n"));
shpart->check_result = VBSD_LKP_CHECK_BODY_OFFSET;
goto bad_kernel;
}
body_offset_sectors = body_offset / blba;
/* Verify kernel body fits in the buffer */
body_sectors = (preamble->body_signature.data_size + blba - 1) / blba;
if (body_sectors * blba > params->kernel_buffer_size) {
VBDEBUG(("Kernel body doesn't fit in memory.\n"));
shpart->check_result = VBSD_LKP_CHECK_BODY_EXCEEDS_MEM;
goto bad_kernel;
}
/* Verify kernel body fits in the partition */
if (body_offset_sectors + body_sectors > part_size) {
VBDEBUG(("Kernel body doesn't fit in partition.\n"));
shpart->check_result = VBSD_LKP_CHECK_BODY_EXCEEDS_PART;
goto bad_kernel;
}
/* Read the kernel data */
VBPERFSTART("VB_RKD");
if (0 != VbExDiskRead(params->disk_handle,
part_start + body_offset_sectors,
body_sectors, params->kernel_buffer)) {
VBDEBUG(("Unable to read kernel data.\n"));
VBPERFEND("VB_RKD");
shpart->check_result = VBSD_LKP_CHECK_READ_DATA;
goto bad_kernel;
}
VBPERFEND("VB_RKD");
/* Verify kernel data */
if (0 != VerifyData((const uint8_t*)params->kernel_buffer,
params->kernel_buffer_size,
&preamble->body_signature, data_key)) {
VBDEBUG(("Kernel data verification failed.\n"));
shpart->check_result = VBSD_LKP_CHECK_VERIFY_DATA;
goto bad_kernel;
}
/* Done with the kernel signing key, so can free it now */
RSAPublicKeyFree(data_key);
data_key = NULL;
/* If we're still here, the kernel is valid. */
/* Save the first good partition we find; that's the one we'll boot */
VBDEBUG(("Partition is good.\n"));
shpart->check_result = VBSD_LKP_CHECK_KERNEL_GOOD;
if (key_block_valid)
shpart->flags |= VBSD_LKP_FLAG_KEY_BLOCK_VALID;
good_partition_key_block_valid = key_block_valid;
/* TODO: GPT partitions start at 1, but cgptlib starts them at 0.
* Adjust here, until cgptlib is fixed. */
good_partition = gpt.current_kernel + 1;
params->partition_number = gpt.current_kernel + 1;
GetCurrentKernelUniqueGuid(&gpt, &params->partition_guid);
/* TODO: GetCurrentKernelUniqueGuid() should take a destination size, or
* the dest should be a struct, so we know it's big enough. */
params->bootloader_address = preamble->bootloader_address;
params->bootloader_size = preamble->bootloader_size;
/* Update GPT to note this is the kernel we're trying */
GptUpdateKernelEntry(&gpt, GPT_UPDATE_ENTRY_TRY);
/* If we're in recovery mode or we're about to boot a dev-signed kernel,
* there's no rollback protection, so we can stop at the first valid
* kernel. */
if (kBootRecovery == boot_mode || !key_block_valid) {
VBDEBUG(("In recovery mode or dev-signed kernel\n"));
break;
}
/* Otherwise, we do care about the key index in the TPM. If the good
* partition's key version is the same as the tpm, then the TPM doesn't
* need updating; we can stop now. Otherwise, we'll check all the other
* headers to see if they contain a newer key. */
if (combined_version == tpm_version) {
VBDEBUG(("Same kernel version\n"));
break;
}
/* Continue, so that we skip the error handling code below */
continue;
bad_kernel:
/* Handle errors parsing this kernel */
if (NULL != data_key)
RSAPublicKeyFree(data_key);
VBDEBUG(("Marking kernel as invalid.\n"));
GptUpdateKernelEntry(&gpt, GPT_UPDATE_ENTRY_BAD);
} /* while(GptNextKernelEntry) */
} while(0);
/* Free kernel buffer */
if (kbuf)
VbExFree(kbuf);
/* Write and free GPT data */
WriteAndFreeGptData(params->disk_handle, &gpt);
/* Handle finding a good partition */
if (good_partition >= 0) {
VBDEBUG(("Good_partition >= 0\n"));
shcall->check_result = VBSD_LKC_CHECK_GOOD_PARTITION;
/* See if we need to update the TPM */
if ((kBootNormal == boot_mode) &&
!((1 == shared->firmware_index) && (shared->flags & VBSD_FWB_TRIED))) {
/* We only update the TPM in normal mode. We don't advance the
* TPM if we're trying a new firmware B, because that firmware
* may have a key change and roll forward the TPM too soon. */
VBDEBUG(("Checking if TPM kernel version needs advancing\n"));
if ((lowest_version > tpm_version) &&
(lowest_version != LOWEST_TPM_VERSION)) {
status = RollbackKernelWrite((uint32_t)lowest_version);
if (0 != status) {
VBDEBUG(("Error writing kernel versions to TPM.\n"));
if (status == TPM_E_MUST_REBOOT)
retval = LOAD_KERNEL_REBOOT;
else
recovery = VBNV_RECOVERY_RW_TPM_ERROR;
goto LoadKernelExit;
}
shared->kernel_version_tpm = (uint32_t)lowest_version;
}
}
/* Lock the kernel versions */
status = RollbackKernelLock();
if (0 != status) {
VBDEBUG(("Error locking kernel versions.\n"));
/* Don't reboot to recovery mode if we're already there */
if (kBootRecovery != boot_mode) {
if (status == TPM_E_MUST_REBOOT)
retval = LOAD_KERNEL_REBOOT;
else
recovery = VBNV_RECOVERY_RW_TPM_ERROR;
goto LoadKernelExit;
}
}
/* Success! */
retval = LOAD_KERNEL_SUCCESS;
} else {
shcall->check_result = (found_partitions > 0
? VBSD_LKC_CHECK_INVALID_PARTITIONS
: VBSD_LKC_CHECK_NO_PARTITIONS);
/* TODO: differentiate between finding an invalid kernel
* (found_partitions>0) and not finding one at all. Right now we
* treat them the same, and return LOAD_KERNEL_INVALID for both. */
retval = LOAD_KERNEL_INVALID;
}
LoadKernelExit:
/* Store recovery request, if any, then tear down non-volatile storage */
VbNvSet(vnc, VBNV_RECOVERY_REQUEST, LOAD_KERNEL_RECOVERY == retval ?
recovery : VBNV_RECOVERY_NOT_REQUESTED);
VbNvTeardown(vnc);
shcall->return_code = (uint8_t)retval;
/* Save whether the good partition's key block was fully verified */
if (good_partition_key_block_valid)
shared->flags |= VBSD_KERNEL_KEY_VERIFIED;
/* Store how much shared data we used, if any */
params->shared_data_size = shared->data_used;
return retval;
}