Files
OpenCellular/chip/g/flash.c
Johnnie Chan dbd62c36da Modified flash API batch write logic to respect row boundaries.
* Added MACRO for specifying row size of flash device.
* Set chip/g specific values for flash row size.

The flash API for g/chip will segment large write operations into a
maximum of 32 word blocks for batch writes to flash memory. Prior to
the change in this commit, the segmentation will adhere to avoiding
crossing page boundaries (2048B) but will not respect row boundaries
(256B). The flash controller will reject any write op that crosses a
row boundary and set a row boundary violation code on its error
register.

BRANCH=none
BUG=b:30819377
TEST=make BOARD=haven_dev
Change-Id: I489122ec0f0db6374dd373a1385c3012bdface20
Reviewed-on: https://chromium-review.googlesource.com/371003
Commit-Ready: Bill Richardson <wfrichar@chromium.org>
Commit-Ready: Johnnie Chan <johnniec@google.com>
Tested-by: Johnnie Chan <johnniec@google.com>
Reviewed-by: Bill Richardson <wfrichar@chromium.org>
Reviewed-by: Vadim Bendebury <vbendeb@chromium.org>
2016-08-24 17:40:39 -07:00

407 lines
11 KiB
C

/* Copyright 2015 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/*
* The SoC's internal flash consists of two separate "banks" of 256K bytes each
* (sometimes called "macros" because of how they're implemented in Verilog).
*
* Each flash bank contains 128 "blocks" or "pages" of 2K bytes each. These
* blocks can be erased individually, or the entire bank can be erased at once.
*
* When the flash content is erased, all its bits are set to 1.
*
* The flash content can be read directly as bytes, halfwords, or words, just
* like any memory region. However, writes can only happen through special
* operations, in units of properly aligned 32-bit words.
*
* The flash controller has a 32-word write buffer. This allows up to 32
* adjacent words (128 bytes) within a bank to be written in one operation.
*
* Multiple writes to the same flash word can be done without first erasing the
* block, however:
*
* A) writes can only change stored bits from 1 to 0, and
*
* B) the manufacturer recommends that no more than two writes be done between
* erase cycles for best results (in terms of reliability, longevity, etc.)
*
* All of this is fairly typical of most flash parts. This next thing is NOT
* typical:
*
* +--------------------------------------------------------------------------+
* + While any write or erase operation is in progress, ALL other access to +
* + that entire bank is stalled. Data reads, instruction fetches, interrupt +
* + vector lookup -- every access blocks until the flash operation finishes. +
* +--------------------------------------------------------------------------+
*
*/
#include "common.h"
#include "console.h"
#include "flash.h"
#include "flash_config.h"
#include "flash_info.h"
#include "registers.h"
#include "timer.h"
#include "watchdog.h"
#define CPRINTF(format, args...) cprintf(CC_EXTENSION, format, ## args)
int flash_pre_init(void)
{
struct g_flash_region regions[4];
int i, num_regions;
num_regions = flash_regions_to_enable(regions, ARRAY_SIZE(regions));
for (i = 0; i < num_regions; i++) {
int reg_base;
/* Region range */
reg_base = GBASE(GLOBALSEC) +
GOFFSET(GLOBALSEC, FLASH_REGION2_BASE_ADDR) +
i * 8;
REG32(reg_base) = regions[i].reg_base;
/*
* The hardware requires a value which is 1 less than the
* actual region size.
*/
REG32(reg_base + 4) = regions[i].reg_size - 1;
/* Region permissions. */
reg_base = GBASE(GLOBALSEC) +
GOFFSET(GLOBALSEC, FLASH_REGION2_CTRL) +
i * 4;
REG32(reg_base) = regions[i].reg_perms;
}
return EC_SUCCESS;
}
int flash_physical_get_protect(int bank)
{
return 0; /* Not protected */
}
uint32_t flash_physical_get_protect_flags(void)
{
return 0; /* no flags set */
}
uint32_t flash_physical_get_valid_flags(void)
{
/* These are the flags we're going to pay attention to */
return EC_FLASH_PROTECT_RO_AT_BOOT |
EC_FLASH_PROTECT_RO_NOW |
EC_FLASH_PROTECT_ALL_NOW;
}
uint32_t flash_physical_get_writable_flags(uint32_t cur_flags)
{
return 0; /* no flags writable */
}
int flash_physical_protect_at_boot(enum flash_wp_range range)
{
return EC_SUCCESS; /* yeah, I did it. */
}
int flash_physical_protect_now(int all)
{
return EC_SUCCESS; /* yeah, I did it. */
}
enum flash_op {
OP_ERASE_BLOCK,
OP_WRITE_BLOCK,
OP_READ_BLOCK,
};
static int do_flash_op(enum flash_op op, int is_info_bank,
int byte_offset, int words)
{
volatile uint32_t *fsh_pe_control;
uint32_t opcode, tmp, errors;
int retry_count, max_attempts, extra_prog_pulse, i;
int timedelay_us = 100;
uint32_t prev_error = 0;
/* Make sure the smart program/erase algorithms are enabled. */
if (!GREAD(FLASH, FSH_TIMING_PROG_SMART_ALGO_ON) ||
!GREAD(FLASH, FSH_TIMING_ERASE_SMART_ALGO_ON)) {
CPRINTF("%s:%d\n", __func__, __LINE__);
return EC_ERROR_UNIMPLEMENTED;
}
/* Error status is self-clearing. Read it until it does (we hope). */
for (i = 0; i < 50; i++) {
tmp = GREAD(FLASH, FSH_ERROR);
if (!tmp)
break;
usleep(timedelay_us);
}
/* If we can't clear the error status register then something is wrong.
*/
if (tmp) {
CPRINTF("%s:%d\n", __func__, __LINE__);
return EC_ERROR_UNKNOWN;
}
/* We have two flash banks. Adjust offset and registers accordingly. */
if (is_info_bank) {
/* Only INFO bank operations are supported. */
fsh_pe_control = GREG32_ADDR(FLASH, FSH_PE_CONTROL1);
} else if (byte_offset >= CFG_FLASH_HALF) {
byte_offset -= CFG_FLASH_HALF;
fsh_pe_control = GREG32_ADDR(FLASH, FSH_PE_CONTROL1);
} else {
fsh_pe_control = GREG32_ADDR(FLASH, FSH_PE_CONTROL0);
}
/* What are we doing? */
switch (op) {
case OP_ERASE_BLOCK:
if (is_info_bank)
/* Erasing the INFO bank from the RW section is
* unsupported. */
return EC_ERROR_INVAL;
opcode = 0x31415927;
words = 0; /* don't care, really */
/* This number is based on the TSMC spec Nme=Terase/Tsme */
max_attempts = 45;
break;
case OP_WRITE_BLOCK:
opcode = 0x27182818;
words--; /* count register is zero-based */
/* This number is based on the TSMC spec Nmp=Tprog/Tsmp */
max_attempts = 9;
break;
case OP_READ_BLOCK:
if (!is_info_bank)
/* This code path only supports reading from
* the INFO bank.
*/
return EC_ERROR_INVAL;
opcode = 0x16021765;
words = 1;
max_attempts = 9;
break;
}
/*
* Set the parameters. For writes, we assume the write buffer is
* already filled before we call this function.
*/
GWRITE_FIELD(FLASH, FSH_TRANS, OFFSET,
byte_offset / 4); /* word offset */
GWRITE_FIELD(FLASH, FSH_TRANS, MAINB, is_info_bank ? 1 : 0);
GWRITE_FIELD(FLASH, FSH_TRANS, SIZE, words);
/* TODO: Make sure this function isn't getting called "too often" in
* between erases.
*/
extra_prog_pulse = 0;
for (retry_count = 0; retry_count < max_attempts; retry_count++) {
/* Kick it off */
GWRITE(FLASH, FSH_PE_EN, 0xb11924e1);
*fsh_pe_control = opcode;
/* Wait for completion. 150ms should be enough
* (crosbug.com/p/45366).
*/
for (i = 0; i < 1500; i++) {
tmp = *fsh_pe_control;
if (!tmp)
break;
usleep(timedelay_us);
}
/* Timed out waiting for control register to clear */
if (tmp) {
CPRINTF("%s:%d\n", __func__, __LINE__);
return EC_ERROR_UNKNOWN;
}
/* Check error status */
errors = GREAD(FLASH, FSH_ERROR);
if (errors && (errors != prev_error)) {
prev_error = errors;
CPRINTF("%s:%d errors %x fsh_pe_control %p\n",
__func__, __LINE__, errors, fsh_pe_control);
}
/* Error status is self-clearing. Read it until it does
* (we hope).
*/
for (i = 0; i < 50; i++) {
tmp = GREAD(FLASH, FSH_ERROR);
if (!tmp)
break;
usleep(timedelay_us);
}
/* If we can't clear the error status register then something
* is wrong.
*/
if (tmp) {
CPRINTF("%s:%d\n", __func__, __LINE__);
return EC_ERROR_UNKNOWN;
}
/* The operation was successful. */
if (!errors) {
/* From the spec:
* "In addition, one more program pulse is needed after
* program verification is passed."
*/
if (op == OP_WRITE_BLOCK && !extra_prog_pulse) {
extra_prog_pulse = 1;
max_attempts++;
continue;
}
return EC_SUCCESS;
}
/* If there were errors after completion retry. */
watchdog_reload();
}
CPRINTF("%s:%d, retry count %d\n", __func__, __LINE__, retry_count);
return EC_ERROR_UNKNOWN;
}
/* Write up to CONFIG_FLASH_WRITE_IDEAL_SIZE bytes at once */
static int write_batch(int byte_offset, int is_info_bank,
int words, const uint8_t *data)
{
volatile uint32_t *fsh_wr_data = GREG32_ADDR(FLASH, FSH_WR_DATA0);
uint32_t val;
int i;
/* Load the write buffer. */
for (i = 0; i < words; i++) {
/*
* We have to write 32-bit values, but we can't guarantee
* alignment for the data. We'll just assemble the word
* manually to avoid alignment faults. Note that we're assuming
* little-endian order here.
*/
val = ((data[3] << 24) | (data[2] << 16) |
(data[1] << 8) | data[0]);
*fsh_wr_data = val;
data += 4;
fsh_wr_data++;
}
return do_flash_op(OP_WRITE_BLOCK, is_info_bank, byte_offset, words);
}
static int flash_physical_write_internal(int byte_offset, int is_info_bank,
int num_bytes, const char *data)
{
int num, ret;
/* The offset and size must be a multiple of CONFIG_FLASH_WRITE_SIZE */
if (byte_offset % CONFIG_FLASH_WRITE_SIZE ||
num_bytes % CONFIG_FLASH_WRITE_SIZE)
return EC_ERROR_INVAL;
while (num_bytes) {
num = MIN(num_bytes, CONFIG_FLASH_WRITE_IDEAL_SIZE);
/*
* Make sure that the write operation will not go
* past a CONFIG_FLASH_ROW_SIZE boundary.
*/
num = MIN(num, CONFIG_FLASH_ROW_SIZE -
byte_offset % CONFIG_FLASH_ROW_SIZE);
ret = write_batch(byte_offset,
is_info_bank,
num / 4, /* word count */
(const uint8_t *)data);
if (ret)
return ret;
num_bytes -= num;
byte_offset += num;
data += num;
}
return EC_SUCCESS;
}
int flash_physical_write(int byte_offset, int num_bytes, const char *data)
{
return flash_physical_write_internal(byte_offset, 0, num_bytes, data);
}
int flash_physical_info_read_word(int byte_offset, uint32_t *dst)
{
int ret;
if (byte_offset % CONFIG_FLASH_WRITE_SIZE)
return EC_ERROR_INVAL;
ret = do_flash_op(OP_READ_BLOCK, 1, byte_offset, 1);
if (ret != EC_SUCCESS)
return ret;
*dst = GREG32(FLASH, FSH_DOUT_VAL1);
return EC_SUCCESS;
}
void flash_info_write_enable(void)
{
/* Enable R/W access to INFO. */
GREG32(GLOBALSEC, FLASH_REGION3_BASE_ADDR) = FLASH_INFO_MEMORY_BASE +
FLASH_INFO_MANUFACTURE_STATE_OFFSET;
GREG32(GLOBALSEC, FLASH_REGION3_SIZE) =
FLASH_INFO_MANUFACTURE_STATE_SIZE - 1;
GREG32(GLOBALSEC, FLASH_REGION3_CTRL) =
GC_GLOBALSEC_FLASH_REGION3_CTRL_EN_MASK |
GC_GLOBALSEC_FLASH_REGION3_CTRL_WR_EN_MASK |
GC_GLOBALSEC_FLASH_REGION3_CTRL_RD_EN_MASK;
}
void flash_info_write_disable(void)
{
GREG32(GLOBALSEC, FLASH_REGION3_CTRL) = 0;
}
int flash_info_physical_write(int byte_offset, int num_bytes, const char *data)
{
if (byte_offset < 0 || num_bytes < 0 ||
byte_offset + num_bytes > FLASH_INFO_SIZE ||
(byte_offset | num_bytes) & (CONFIG_FLASH_WRITE_SIZE - 1))
return EC_ERROR_INVAL;
return flash_physical_write_internal(byte_offset, 1, num_bytes, data);
}
int flash_physical_erase(int byte_offset, int num_bytes)
{
int ret;
/* Offset and size must be a multiple of CONFIG_FLASH_ERASE_SIZE */
if (byte_offset % CONFIG_FLASH_ERASE_SIZE ||
num_bytes % CONFIG_FLASH_ERASE_SIZE)
return EC_ERROR_INVAL;
while (num_bytes) {
/* We may be asked to erase multiple banks */
ret = do_flash_op(OP_ERASE_BLOCK,
0, /* not the INFO bank */
byte_offset,
num_bytes / 4); /* word count */
if (ret) {
CPRINTF("Failed to erase block at %x\n", byte_offset);
return ret;
}
num_bytes -= CONFIG_FLASH_ERASE_SIZE;
byte_offset += CONFIG_FLASH_ERASE_SIZE;
}
return EC_SUCCESS;
}