mirror of
https://github.com/Telecominfraproject/OpenCellular.git
synced 2026-01-06 06:52:00 +00:00
Make sure that a negative 'num' param won't be accepted if passed by a malicious caller. BUG=chrome-os-partner:11048 TEST=manual No visible changes, everything should continue to work. Change-Id: I8128d24adc99e5ff954a6b8065e1bfa8bf20630e Signed-off-by: Bill Richardson <wfrichar@chromium.org> Reviewed-on: https://gerrit.chromium.org/gerrit/27386 Reviewed-by: Randall Spangler <rspangler@chromium.org>
874 lines
22 KiB
C
874 lines
22 KiB
C
/* Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*
|
|
* LED controls.
|
|
*/
|
|
|
|
#include "common.h"
|
|
#include "console.h"
|
|
#include "gpio.h"
|
|
#include "hooks.h"
|
|
#include "host_command.h"
|
|
#include "i2c.h"
|
|
#include "lightbar.h"
|
|
#include "task.h"
|
|
#include "timer.h"
|
|
#include "util.h"
|
|
|
|
/* Console output macros */
|
|
#define CPUTS(outstr) cputs(CC_LIGHTBAR, outstr)
|
|
#define CPRINTF(format, args...) cprintf(CC_LIGHTBAR, format, ## args)
|
|
|
|
/******************************************************************************/
|
|
/* How to talk to the controller */
|
|
/******************************************************************************/
|
|
|
|
/* Since there's absolutely nothing we can do about it if an I2C access
|
|
* isn't working, we're completely ignoring any failures. */
|
|
|
|
static const uint8_t i2c_addr[] = { 0x54, 0x56 };
|
|
|
|
static inline void controller_write(int ctrl_num, uint8_t reg, uint8_t val)
|
|
{
|
|
ctrl_num = ctrl_num % ARRAY_SIZE(i2c_addr);
|
|
i2c_write8(I2C_PORT_LIGHTBAR, i2c_addr[ctrl_num], reg, val);
|
|
}
|
|
|
|
static inline uint8_t controller_read(int ctrl_num, uint8_t reg)
|
|
{
|
|
int val = 0;
|
|
ctrl_num = ctrl_num % ARRAY_SIZE(i2c_addr);
|
|
i2c_read8(I2C_PORT_LIGHTBAR, i2c_addr[ctrl_num], reg, &val);
|
|
return val;
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/* Controller details. We have an ADP8861 and and ADP8863, but we can treat
|
|
* them identically for our purposes */
|
|
/******************************************************************************/
|
|
|
|
/* We need to limit the total current per ISC to no more than 20mA (5mA per
|
|
* color LED, but we have four LEDs in parallel on each ISC). Any more than
|
|
* that runs the risk of damaging the LED component. A value of 0x67 is as high
|
|
* as we want (assuming Square Law), but the blue LED is the least bright, so
|
|
* I've lowered the other colors until they all appear approximately equal
|
|
* brightness when full on. That's still pretty bright and a lot of current
|
|
* drain on the battery, so we'll probably rarely go that high. */
|
|
#define MAX_RED 0x5c
|
|
#define MAX_GREEN 0x38
|
|
#define MAX_BLUE 0x67
|
|
|
|
/* How many LEDs do we have? */
|
|
#define NUM_LEDS 4
|
|
|
|
/* How we'd like to see the driver chips initialized. The controllers have some
|
|
* auto-cycling capability, but it's not much use for our purposes. For now,
|
|
* we'll just control all color changes actively. */
|
|
struct initdata_s {
|
|
uint8_t reg;
|
|
uint8_t val;
|
|
};
|
|
|
|
static const struct initdata_s init_vals[] = {
|
|
{0x04, 0x00}, /* no backlight function */
|
|
{0x05, 0x3f}, /* xRGBRGB per chip */
|
|
{0x0f, 0x01}, /* square law looks better */
|
|
{0x10, 0x3f}, /* enable independent LEDs */
|
|
{0x11, 0x00}, /* no auto cycling */
|
|
{0x12, 0x00}, /* no auto cycling */
|
|
{0x13, 0x00}, /* instant fade in/out */
|
|
{0x14, 0x00}, /* not using LED 7 */
|
|
{0x15, 0x00}, /* current for LED 6 (blue) */
|
|
{0x16, 0x00}, /* current for LED 5 (red) */
|
|
{0x17, 0x00}, /* current for LED 4 (green) */
|
|
{0x18, 0x00}, /* current for LED 3 (blue) */
|
|
{0x19, 0x00}, /* current for LED 2 (red) */
|
|
{0x1a, 0x00}, /* current for LED 1 (green) */
|
|
};
|
|
|
|
static void set_from_array(const struct initdata_s *data, int count)
|
|
{
|
|
int i;
|
|
for (i = 0; i < count; i++) {
|
|
controller_write(0, data[i].reg, data[i].val);
|
|
controller_write(1, data[i].reg, data[i].val);
|
|
}
|
|
}
|
|
|
|
/* Controller register lookup tables. */
|
|
static const uint8_t led_to_ctrl[] = { 0, 0, 1, 1 };
|
|
static const uint8_t led_to_isc[] = { 0x15, 0x18, 0x15, 0x18 };
|
|
|
|
/* Scale 0-255 into max value */
|
|
static inline uint8_t scale_abs(int val, int max)
|
|
{
|
|
return (val * max)/255 + max/256;
|
|
}
|
|
|
|
/* It will often be simpler to provide an overall brightness control. */
|
|
static int brightness = 0x40;
|
|
|
|
/* So that we can make brightness changes happen instantly, we need to track
|
|
* the current values. The values in the controllers aren't very helpful. */
|
|
static uint8_t current[NUM_LEDS][3];
|
|
|
|
/* Scale 0-255 by brightness */
|
|
static inline uint8_t scale(int val, int max)
|
|
{
|
|
return scale_abs((val * brightness)/255, max);
|
|
}
|
|
|
|
static void lightbar_init_vals(void)
|
|
{
|
|
CPRINTF("[%T LB_init_vals]\n");
|
|
set_from_array(init_vals, ARRAY_SIZE(init_vals));
|
|
memset(current, 0, sizeof(current));
|
|
}
|
|
|
|
|
|
/* Helper function. */
|
|
static void setrgb(int led, int red, int green, int blue)
|
|
{
|
|
int ctrl, bank;
|
|
current[led][0] = red;
|
|
current[led][1] = green;
|
|
current[led][2] = blue;
|
|
ctrl = led_to_ctrl[led];
|
|
bank = led_to_isc[led];
|
|
controller_write(ctrl, bank, scale(blue, MAX_BLUE));
|
|
controller_write(ctrl, bank+1, scale(red, MAX_RED));
|
|
controller_write(ctrl, bank+2, scale(green, MAX_GREEN));
|
|
}
|
|
|
|
|
|
/******************************************************************************/
|
|
/* Basic LED control functions. */
|
|
/******************************************************************************/
|
|
|
|
static void lightbar_off(void)
|
|
{
|
|
CPRINTF("[%T LB_off]\n");
|
|
/* Just go into standby mode. No register values should change. */
|
|
controller_write(0, 0x01, 0x00);
|
|
controller_write(1, 0x01, 0x00);
|
|
}
|
|
|
|
static void lightbar_on(void)
|
|
{
|
|
CPRINTF("[%T LB_on]\n");
|
|
/* Come out of standby mode. */
|
|
controller_write(0, 0x01, 0x20);
|
|
controller_write(1, 0x01, 0x20);
|
|
}
|
|
|
|
|
|
/* LEDs are numbered 0-3, RGB values should be in 0-255.
|
|
* If you specify too large an LED, it sets them all. */
|
|
static void lightbar_setrgb(int led, int red, int green, int blue)
|
|
{
|
|
int i;
|
|
if (led >= NUM_LEDS)
|
|
for (i = 0; i < NUM_LEDS; i++)
|
|
setrgb(i, red, green, blue);
|
|
else
|
|
setrgb(led, red, green, blue);
|
|
}
|
|
|
|
static inline void lightbar_brightness(int newval)
|
|
{
|
|
int i;
|
|
CPRINTF("[%T LB_bright 0x%02x]\n", newval);
|
|
brightness = newval;
|
|
for (i = 0; i < NUM_LEDS; i++)
|
|
lightbar_setrgb(i, current[i][0],
|
|
current[i][1], current[i][2]);
|
|
}
|
|
|
|
|
|
/******************************************************************************/
|
|
|
|
/* Major colors */
|
|
static const struct {
|
|
uint8_t r, g, b;
|
|
} testy[] = {
|
|
{0xff, 0x00, 0x00},
|
|
{0x00, 0xff, 0x00},
|
|
{0x00, 0x00, 0xff},
|
|
{0xff, 0xff, 0x00}, /* The first four are Google colors */
|
|
{0x00, 0xff, 0xff},
|
|
{0xff, 0x00, 0xff},
|
|
{0xff, 0xff, 0xff},
|
|
};
|
|
|
|
|
|
/******************************************************************************/
|
|
/* Now for the pretty patterns */
|
|
/******************************************************************************/
|
|
|
|
/* Here's where we keep messages waiting to be delivered to lightbar task. If
|
|
* more than one is sent before the task responds, we only want to deliver the
|
|
* latest one. */
|
|
static uint32_t pending_msg;
|
|
/* And here's the task event that we use to trigger delivery. */
|
|
#define PENDING_MSG 1
|
|
|
|
|
|
/* Interruptible delay */
|
|
#define WAIT_OR_RET(A) do { \
|
|
uint32_t msg = task_wait_event(A); \
|
|
if (TASK_EVENT_CUSTOM(msg) == PENDING_MSG) \
|
|
return PENDING_MSG; } while (0)
|
|
|
|
/* CPU is off */
|
|
static uint32_t sequence_S5(void)
|
|
{
|
|
/* Just wait forever. */
|
|
lightbar_off();
|
|
WAIT_OR_RET(-1);
|
|
return 0;
|
|
}
|
|
|
|
/* CPU is powering up. The lightbar loses power when the CPU is in S5, so this
|
|
* might not be useful. */
|
|
static uint32_t sequence_S5S3(void)
|
|
{
|
|
/* The controllers need 100us after power is applied before they'll
|
|
* respond. Don't return early, because we still want to initialize the
|
|
* lightbar even if another message comes along while we're waiting. */
|
|
usleep(100);
|
|
lightbar_init_vals();
|
|
|
|
/* For now, do something to indicate this transition.
|
|
* We might see it. */
|
|
lightbar_on();
|
|
lightbar_setrgb(NUM_LEDS, 0, 255, 0);
|
|
WAIT_OR_RET(500000);
|
|
return 0;
|
|
}
|
|
|
|
/* CPU is fully on */
|
|
static uint32_t sequence_S0(void)
|
|
{
|
|
lightbar_on();
|
|
lightbar_setrgb(NUM_LEDS, 255, 255, 255);
|
|
WAIT_OR_RET(-1);
|
|
return 0;
|
|
}
|
|
|
|
/* CPU is going to sleep */
|
|
static uint32_t sequence_S0S3(void)
|
|
{
|
|
int i;
|
|
lightbar_on();
|
|
for (i = 0; i < NUM_LEDS; i++) {
|
|
lightbar_setrgb(i, 0, 0, 0);
|
|
WAIT_OR_RET(200000);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* CPU is sleeping */
|
|
static uint32_t sequence_S3(void)
|
|
{
|
|
lightbar_off();
|
|
lightbar_init_vals();
|
|
lightbar_setrgb(NUM_LEDS, 0, 0, 0);
|
|
while (1) {
|
|
WAIT_OR_RET(3000000);
|
|
lightbar_on();
|
|
/* FIXME: indicate battery level? */
|
|
lightbar_setrgb(NUM_LEDS, 255, 255, 255);
|
|
WAIT_OR_RET(100000);
|
|
lightbar_setrgb(NUM_LEDS, 0, 0, 0);
|
|
lightbar_off();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* CPU is waking from sleep */
|
|
static uint32_t sequence_S3S0(void)
|
|
{
|
|
int i;
|
|
lightbar_init_vals();
|
|
lightbar_on();
|
|
for (i = 0; i < NUM_LEDS; i++) {
|
|
lightbar_setrgb(i, 255, 255, 255);
|
|
WAIT_OR_RET(200000);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Sleep to off. */
|
|
static uint32_t sequence_S3S5(void)
|
|
{
|
|
/* For now, do something to indicate this transition.
|
|
* We might see it. */
|
|
lightbar_on();
|
|
lightbar_setrgb(NUM_LEDS, 255, 0, 0);
|
|
WAIT_OR_RET(500000);
|
|
return 0;
|
|
}
|
|
|
|
/* Used by factory. */
|
|
static uint32_t sequence_TEST_inner(void)
|
|
{
|
|
int i, j, k, r, g, b;
|
|
int kmax = 254;
|
|
int kstep = 8;
|
|
|
|
lightbar_init_vals();
|
|
lightbar_on();
|
|
for (i = 0; i < ARRAY_SIZE(testy); i++) {
|
|
for (k = 0; k <= kmax; k += kstep) {
|
|
for (j = 0; j < NUM_LEDS; j++) {
|
|
r = testy[i].r ? k : 0;
|
|
g = testy[i].g ? k : 0;
|
|
b = testy[i].b ? k : 0;
|
|
lightbar_setrgb(j, r, g, b);
|
|
}
|
|
WAIT_OR_RET(10000);
|
|
}
|
|
for (k = kmax; k >= 0; k -= kstep) {
|
|
for (j = 0; j < NUM_LEDS; j++) {
|
|
r = testy[i].r ? k : 0;
|
|
g = testy[i].g ? k : 0;
|
|
b = testy[i].b ? k : 0;
|
|
lightbar_setrgb(j, r, g, b);
|
|
}
|
|
WAIT_OR_RET(10000);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static uint32_t sequence_TEST(void)
|
|
{
|
|
int tmp;
|
|
uint32_t r;
|
|
|
|
tmp = brightness;
|
|
brightness = 255;
|
|
r = sequence_TEST_inner();
|
|
brightness = tmp;
|
|
return r;
|
|
}
|
|
|
|
/* This uses the auto-cycling features of the controllers to make a semi-random
|
|
* pattern of slowly fading colors. This is interesting only because it doesn't
|
|
* require any effort from the EC. */
|
|
static uint32_t sequence_PULSE(void)
|
|
{
|
|
uint32_t msg;
|
|
int r = scale(255, MAX_RED);
|
|
int g = scale(255, MAX_BLUE);
|
|
int b = scale(255, MAX_GREEN);
|
|
struct initdata_s pulse_vals[] = {
|
|
{0x11, 0xce},
|
|
{0x12, 0x67},
|
|
{0x13, 0xef},
|
|
{0x15, b},
|
|
{0x16, r},
|
|
{0x17, g},
|
|
{0x18, b},
|
|
{0x19, r},
|
|
{0x1a, g},
|
|
};
|
|
|
|
lightbar_init_vals();
|
|
lightbar_on();
|
|
|
|
set_from_array(pulse_vals, ARRAY_SIZE(pulse_vals));
|
|
controller_write(1, 0x13, 0xcd); /* this one's different */
|
|
|
|
/* Not using WAIT_OR_RET() here, because we want to clean up when we're
|
|
* done. The only way out is to get a message. */
|
|
msg = task_wait_event(-1);
|
|
lightbar_init_vals();
|
|
return TASK_EVENT_CUSTOM(msg);
|
|
}
|
|
|
|
|
|
|
|
/* The host CPU (or someone) is going to poke at the lightbar directly, so we
|
|
* don't want the EC messing with it. We'll just sit here and ignore all
|
|
* other messages until we're told to continue. */
|
|
static uint32_t sequence_STOP(void)
|
|
{
|
|
uint32_t msg;
|
|
|
|
do {
|
|
msg = TASK_EVENT_CUSTOM(task_wait_event(-1));
|
|
CPRINTF("[%T LB_stop got pending_msg %d]\n", pending_msg);
|
|
} while (msg != PENDING_MSG || pending_msg != LIGHTBAR_RUN);
|
|
/* FIXME: What should we do if the host shuts down? */
|
|
|
|
CPRINTF("[%T LB_stop->running]\n");
|
|
return 0;
|
|
}
|
|
|
|
/* Telling us to run when we're already running should do nothing. */
|
|
static uint32_t sequence_RUN(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/* We shouldn't come here, but if we do it shouldn't hurt anything */
|
|
static uint32_t sequence_ERROR(void)
|
|
{
|
|
lightbar_init_vals();
|
|
lightbar_on();
|
|
|
|
lightbar_setrgb(0, 255, 255, 255);
|
|
lightbar_setrgb(1, 255, 0, 255);
|
|
lightbar_setrgb(2, 0, 255, 255);
|
|
lightbar_setrgb(3, 255, 255, 255);
|
|
|
|
WAIT_OR_RET(10000000);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static const struct {
|
|
uint8_t led;
|
|
uint8_t r, g, b;
|
|
unsigned int delay;
|
|
} konami[] = {
|
|
|
|
{1, 0xff, 0xff, 0x00, 0},
|
|
{2, 0xff, 0xff, 0x00, 100000},
|
|
{1, 0x00, 0x00, 0x00, 0},
|
|
{2, 0x00, 0x00, 0x00, 100000},
|
|
|
|
{1, 0xff, 0xff, 0x00, 0},
|
|
{2, 0xff, 0xff, 0x00, 100000},
|
|
{1, 0x00, 0x00, 0x00, 0},
|
|
{2, 0x00, 0x00, 0x00, 100000},
|
|
|
|
{0, 0x00, 0x00, 0xff, 0},
|
|
{3, 0x00, 0x00, 0xff, 100000},
|
|
{0, 0x00, 0x00, 0x00, 0},
|
|
{3, 0x00, 0x00, 0x00, 100000},
|
|
|
|
{0, 0x00, 0x00, 0xff, 0},
|
|
{3, 0x00, 0x00, 0xff, 100000},
|
|
{0, 0x00, 0x00, 0x00, 0},
|
|
{3, 0x00, 0x00, 0x00, 100000},
|
|
|
|
{0, 0xff, 0x00, 0x00, 0},
|
|
{1, 0xff, 0x00, 0x00, 100000},
|
|
{0, 0x00, 0x00, 0x00, 0},
|
|
{1, 0x00, 0x00, 0x00, 100000},
|
|
|
|
{2, 0x00, 0xff, 0x00, 0},
|
|
{3, 0x00, 0xff, 0x00, 100000},
|
|
{2, 0x00, 0x00, 0x00, 0},
|
|
{3, 0x00, 0x00, 0x00, 100000},
|
|
|
|
{0, 0xff, 0x00, 0x00, 0},
|
|
{1, 0xff, 0x00, 0x00, 100000},
|
|
{0, 0x00, 0x00, 0x00, 0},
|
|
{1, 0x00, 0x00, 0x00, 100000},
|
|
|
|
{2, 0x00, 0xff, 0x00, 0},
|
|
{3, 0x00, 0xff, 0x00, 100000},
|
|
{2, 0x00, 0x00, 0x00, 0},
|
|
{3, 0x00, 0x00, 0x00, 100000},
|
|
|
|
{0, 0x00, 0xff, 0xff, 0},
|
|
{2, 0x00, 0xff, 0xff, 100000},
|
|
{0, 0x00, 0x00, 0x00, 0},
|
|
{2, 0x00, 0x00, 0x00, 150000},
|
|
|
|
{1, 0xff, 0x00, 0xff, 0},
|
|
{3, 0xff, 0x00, 0xff, 100000},
|
|
{1, 0x00, 0x00, 0x00, 0},
|
|
{3, 0x00, 0x00, 0x00, 250000},
|
|
|
|
{4, 0xff, 0xff, 0xff, 100000},
|
|
{4, 0x00, 0x00, 0x00, 100000},
|
|
|
|
{4, 0xff, 0xff, 0xff, 100000},
|
|
{4, 0x00, 0x00, 0x00, 100000},
|
|
|
|
{4, 0xff, 0xff, 0xff, 100000},
|
|
{4, 0x00, 0x00, 0x00, 100000},
|
|
|
|
{4, 0xff, 0xff, 0xff, 100000},
|
|
{4, 0x00, 0x00, 0x00, 100000},
|
|
|
|
{4, 0xff, 0xff, 0xff, 100000},
|
|
{4, 0x00, 0x00, 0x00, 100000},
|
|
|
|
{4, 0xff, 0xff, 0xff, 100000},
|
|
{4, 0x00, 0x00, 0x00, 100000},
|
|
|
|
};
|
|
|
|
static uint32_t sequence_KONAMI(void)
|
|
{
|
|
int i;
|
|
int tmp;
|
|
|
|
lightbar_init_vals();
|
|
lightbar_on();
|
|
|
|
tmp = brightness;
|
|
brightness = 255;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(konami); i++) {
|
|
lightbar_setrgb(konami[i].led,
|
|
konami[i].r, konami[i].g, konami[i].b);
|
|
if (konami[i].delay)
|
|
usleep(konami[i].delay);
|
|
}
|
|
|
|
brightness = tmp;
|
|
return 0;
|
|
}
|
|
|
|
/****************************************************************************/
|
|
/* The main lightbar task. It just cycles between various pretty patterns. */
|
|
/****************************************************************************/
|
|
|
|
/* Link each sequence with a command to invoke it. */
|
|
struct lightbar_cmd_t {
|
|
const char * const string;
|
|
uint32_t (*sequence)(void);
|
|
};
|
|
|
|
#define LBMSG(state) { #state, sequence_##state }
|
|
#include "lightbar_msg_list.h"
|
|
static struct lightbar_cmd_t lightbar_cmds[] = {
|
|
LIGHTBAR_MSG_LIST
|
|
};
|
|
#undef LBMSG
|
|
|
|
static enum lightbar_sequence current_state, previous_state;
|
|
|
|
void lightbar_task(void)
|
|
{
|
|
uint32_t msg;
|
|
|
|
current_state = LIGHTBAR_S5;
|
|
previous_state = LIGHTBAR_S5;
|
|
|
|
while (1) {
|
|
CPRINTF("[%T LB task %d = %s]\n",
|
|
current_state, lightbar_cmds[current_state].string);
|
|
msg = lightbar_cmds[current_state].sequence();
|
|
if (TASK_EVENT_CUSTOM(msg) == PENDING_MSG) {
|
|
CPRINTF("[%T LB msg %d = %s]\n", pending_msg,
|
|
lightbar_cmds[pending_msg].string);
|
|
previous_state = current_state;
|
|
current_state = pending_msg;
|
|
} else {
|
|
CPRINTF("[%T LB msg 0x%x]\n", msg);
|
|
switch (current_state) {
|
|
case LIGHTBAR_S5S3:
|
|
current_state = LIGHTBAR_S3;
|
|
break;
|
|
case LIGHTBAR_S3S0:
|
|
current_state = LIGHTBAR_S0;
|
|
break;
|
|
case LIGHTBAR_S0S3:
|
|
current_state = LIGHTBAR_S3;
|
|
break;
|
|
case LIGHTBAR_S3S5:
|
|
current_state = LIGHTBAR_S5;
|
|
break;
|
|
case LIGHTBAR_TEST:
|
|
case LIGHTBAR_STOP:
|
|
case LIGHTBAR_RUN:
|
|
case LIGHTBAR_ERROR:
|
|
case LIGHTBAR_KONAMI:
|
|
current_state = previous_state;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Function to request a preset sequence from the lightbar task. */
|
|
void lightbar_sequence(enum lightbar_sequence num)
|
|
{
|
|
if (num > 0 && num < LIGHTBAR_NUM_SEQUENCES) {
|
|
CPRINTF("[%T LB_seq %d = %s]\n", num,
|
|
lightbar_cmds[num].string);
|
|
pending_msg = num;
|
|
task_set_event(TASK_ID_LIGHTBAR,
|
|
TASK_EVENT_WAKE | TASK_EVENT_CUSTOM(PENDING_MSG),
|
|
0);
|
|
} else
|
|
CPRINTF("[%T LB_seq %d - ignored]\n", num);
|
|
}
|
|
|
|
/****************************************************************************/
|
|
/* Get notifications from other parts of the system */
|
|
|
|
static int lightbar_startup(void)
|
|
{
|
|
lightbar_sequence(LIGHTBAR_S5S3);
|
|
return EC_SUCCESS;
|
|
}
|
|
DECLARE_HOOK(HOOK_CHIPSET_STARTUP, lightbar_startup, HOOK_PRIO_DEFAULT);
|
|
|
|
static int lightbar_resume(void)
|
|
{
|
|
lightbar_sequence(LIGHTBAR_S3S0);
|
|
return EC_SUCCESS;
|
|
}
|
|
DECLARE_HOOK(HOOK_CHIPSET_RESUME, lightbar_resume, HOOK_PRIO_DEFAULT);
|
|
|
|
static int lightbar_suspend(void)
|
|
{
|
|
lightbar_sequence(LIGHTBAR_S0S3);
|
|
return EC_SUCCESS;
|
|
}
|
|
DECLARE_HOOK(HOOK_CHIPSET_SUSPEND, lightbar_suspend, HOOK_PRIO_DEFAULT);
|
|
|
|
static int lightbar_shutdown(void)
|
|
{
|
|
lightbar_sequence(LIGHTBAR_S3S5);
|
|
return EC_SUCCESS;
|
|
}
|
|
DECLARE_HOOK(HOOK_CHIPSET_SHUTDOWN, lightbar_shutdown, HOOK_PRIO_DEFAULT);
|
|
|
|
/****************************************************************************/
|
|
/* Generic command-handling (should work the same for both console & LPC) */
|
|
/****************************************************************************/
|
|
|
|
static const uint8_t dump_reglist[] = {
|
|
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
|
|
0x08, 0x09, 0x0a, 0x0f,
|
|
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
|
|
0x18, 0x19, 0x1a
|
|
};
|
|
|
|
static void do_cmd_dump(struct ec_params_lightbar_cmd *ptr)
|
|
{
|
|
int i;
|
|
uint8_t reg;
|
|
|
|
BUILD_ASSERT(ARRAY_SIZE(dump_reglist) ==
|
|
ARRAY_SIZE(ptr->out.dump.vals));
|
|
|
|
for (i = 0; i < ARRAY_SIZE(dump_reglist); i++) {
|
|
reg = dump_reglist[i];
|
|
ptr->out.dump.vals[i].reg = reg;
|
|
ptr->out.dump.vals[i].ic0 = controller_read(0, reg);
|
|
ptr->out.dump.vals[i].ic1 = controller_read(1, reg);
|
|
}
|
|
}
|
|
|
|
static void do_cmd_rgb(uint8_t led,
|
|
uint8_t red, uint8_t green, uint8_t blue)
|
|
{
|
|
int i;
|
|
|
|
if (led >= NUM_LEDS)
|
|
for (i = 0; i < NUM_LEDS; i++)
|
|
lightbar_setrgb(i, red, green, blue);
|
|
else
|
|
lightbar_setrgb(led, red, green, blue);
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Host commands via LPC bus */
|
|
/****************************************************************************/
|
|
|
|
static int lpc_cmd_lightbar(struct host_cmd_handler_args *args)
|
|
{
|
|
struct ec_params_lightbar_cmd *ptr =
|
|
(struct ec_params_lightbar_cmd *)args->response;
|
|
|
|
/*
|
|
* TODO: (crosbug.com/p/11277) Now that params and response are
|
|
* separate pointers, they need to be propagated to the lightbar
|
|
* sub-commands. For now, just copy params to response so the
|
|
* sub-commands above will work unchanged.
|
|
*/
|
|
if (args->params != args->response)
|
|
memcpy(args->response, args->params, args->params_size);
|
|
|
|
switch (ptr->in.cmd) {
|
|
case LIGHTBAR_CMD_DUMP:
|
|
do_cmd_dump(ptr);
|
|
args->response_size = sizeof(struct ec_params_lightbar_cmd);
|
|
break;
|
|
case LIGHTBAR_CMD_OFF:
|
|
lightbar_off();
|
|
break;
|
|
case LIGHTBAR_CMD_ON:
|
|
lightbar_on();
|
|
break;
|
|
case LIGHTBAR_CMD_INIT:
|
|
lightbar_init_vals();
|
|
break;
|
|
case LIGHTBAR_CMD_BRIGHTNESS:
|
|
lightbar_brightness(ptr->in.brightness.num);
|
|
break;
|
|
case LIGHTBAR_CMD_SEQ:
|
|
lightbar_sequence(ptr->in.seq.num);
|
|
break;
|
|
case LIGHTBAR_CMD_REG:
|
|
controller_write(ptr->in.reg.ctrl,
|
|
ptr->in.reg.reg,
|
|
ptr->in.reg.value);
|
|
break;
|
|
case LIGHTBAR_CMD_RGB:
|
|
do_cmd_rgb(ptr->in.rgb.led,
|
|
ptr->in.rgb.red,
|
|
ptr->in.rgb.green,
|
|
ptr->in.rgb.blue);
|
|
break;
|
|
case LIGHTBAR_CMD_GET_SEQ:
|
|
ptr->out.get_seq.num = current_state;
|
|
args->response_size = sizeof(struct ec_params_lightbar_cmd);
|
|
break;
|
|
default:
|
|
CPRINTF("[%T LB bad cmd 0x%x]\n", ptr->in.cmd);
|
|
return EC_RES_INVALID_PARAM;
|
|
}
|
|
|
|
return EC_RES_SUCCESS;
|
|
}
|
|
|
|
DECLARE_HOST_COMMAND(EC_CMD_LIGHTBAR_CMD,
|
|
lpc_cmd_lightbar,
|
|
EC_VER_MASK(0));
|
|
|
|
|
|
|
|
/****************************************************************************/
|
|
/* EC console commands */
|
|
/****************************************************************************/
|
|
|
|
#ifdef CONSOLE_COMMAND_LIGHTBAR_HELP
|
|
static int help(const char *cmd)
|
|
{
|
|
ccprintf("Usage:\n");
|
|
ccprintf(" %s - dump all regs\n", cmd);
|
|
ccprintf(" %s off - enter standby\n", cmd);
|
|
ccprintf(" %s on - leave standby\n", cmd);
|
|
ccprintf(" %s init - load default vals\n", cmd);
|
|
ccprintf(" %s brightness NUM - set intensity (0-ff)\n", cmd);
|
|
ccprintf(" %s seq [NUM|SEQUENCE] - run given pattern"
|
|
" (no arg for list)\n", cmd);
|
|
ccprintf(" %s CTRL REG VAL - set LED controller regs\n", cmd);
|
|
ccprintf(" %s LED RED GREEN BLUE - set color manually"
|
|
" (LED=4 for all)\n", cmd);
|
|
return EC_SUCCESS;
|
|
}
|
|
#endif
|
|
|
|
static uint8_t find_msg_by_name(const char *str)
|
|
{
|
|
uint8_t i;
|
|
for (i = 0; i < LIGHTBAR_NUM_SEQUENCES; i++)
|
|
if (!strcasecmp(str, lightbar_cmds[i].string))
|
|
return i;
|
|
|
|
return LIGHTBAR_NUM_SEQUENCES;
|
|
}
|
|
|
|
static void show_msg_names(void)
|
|
{
|
|
int i;
|
|
ccprintf("Sequences:");
|
|
for (i = 0; i < LIGHTBAR_NUM_SEQUENCES; i++)
|
|
ccprintf(" %s", lightbar_cmds[i].string);
|
|
ccprintf("\nCurrent = 0x%x %s\n", current_state,
|
|
lightbar_cmds[current_state].string);
|
|
}
|
|
|
|
static int command_lightbar(int argc, char **argv)
|
|
{
|
|
int i;
|
|
uint8_t num;
|
|
struct ec_params_lightbar_cmd params;
|
|
|
|
if (1 == argc) { /* no args = dump 'em all */
|
|
do_cmd_dump(¶ms);
|
|
for (i = 0; i < ARRAY_SIZE(dump_reglist); i++)
|
|
ccprintf(" %02x %02x %02x\n",
|
|
params.out.dump.vals[i].reg,
|
|
params.out.dump.vals[i].ic0,
|
|
params.out.dump.vals[i].ic1);
|
|
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
if (argc == 2 && !strcasecmp(argv[1], "init")) {
|
|
lightbar_init_vals();
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
if (argc == 2 && !strcasecmp(argv[1], "off")) {
|
|
lightbar_off();
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
if (argc == 2 && !strcasecmp(argv[1], "on")) {
|
|
lightbar_on();
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
if (argc == 3 && !strcasecmp(argv[1], "brightness")) {
|
|
char *e;
|
|
num = 0xff & strtoi(argv[2], &e, 16);
|
|
lightbar_brightness(num);
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
if (argc >= 2 && !strcasecmp(argv[1], "seq")) {
|
|
char *e;
|
|
uint8_t num;
|
|
if (argc == 2) {
|
|
show_msg_names();
|
|
return 0;
|
|
}
|
|
num = 0xff & strtoi(argv[2], &e, 16);
|
|
if (*e)
|
|
num = find_msg_by_name(argv[2]);
|
|
if (num >= LIGHTBAR_NUM_SEQUENCES)
|
|
return EC_ERROR_PARAM2;
|
|
lightbar_sequence(num);
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
if (argc == 4) {
|
|
char *e;
|
|
uint8_t ctrl, reg, val;
|
|
ctrl = 0xff & strtoi(argv[1], &e, 16);
|
|
reg = 0xff & strtoi(argv[2], &e, 16);
|
|
val = 0xff & strtoi(argv[3], &e, 16);
|
|
controller_write(ctrl, reg, val);
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
if (argc == 5) {
|
|
char *e;
|
|
uint8_t led, r, g, b;
|
|
led = strtoi(argv[1], &e, 16);
|
|
r = strtoi(argv[2], &e, 16);
|
|
g = strtoi(argv[3], &e, 16);
|
|
b = strtoi(argv[4], &e, 16);
|
|
do_cmd_rgb(led, r, g, b);
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
#ifdef CONSOLE_COMMAND_LIGHTBAR_HELP
|
|
help(argv[0]);
|
|
#endif
|
|
|
|
return EC_ERROR_INVAL;
|
|
}
|
|
DECLARE_CONSOLE_COMMAND(lightbar, command_lightbar,
|
|
"[on | off | init | brightness | seq] | [ctrl reg val]",
|
|
"Get/set lightbar state",
|
|
NULL);
|