Files
OpenCellular/tests/vboot_kernel_tests.c
Duncan Laurie 162f788596 vboot_kernel: Validate GPT header before using
In AllocAndReadGptData() the code was changed to use the GPT header
to determine the LBA of the GPT entries.  This change did not account
for devices that have an invalid header and it can attempt to read
from invalid block addresses on a device.

This commit happened here:
a2d72f7 vboot: cgpt: Refer to partition entries by entries_lba.
https://chromium-review.googlesource.com/213861

The subsequent steps in vboot, LoadKernel->GptInit->GptRepair will
fix a missing header and entries, so it is only necessary for one of
the headers to be valid.

This is commonly the case with a new USB stick that has an image
written to it as only the primary header will be valid in this case.
However it is also true if the primary header has been corrupted and
the secondary header is still valid.

The code has been changed to call CheckHeader() on the primary and
secondary headers before attempting to use the 'entries_lba' field
to read the entries from the device.  AllocAndReadGptData() now only
fails if both headers are invalid.

A number of new unit tests are created to check for these failure
conditions.  In order to support this I had to extend the vboot_kernel
test infrastructure to have a buffer for the mocked disk data instead
of just ignoring reads and writes.  This is because many of the existing
tests assumed they could have an invalid GPT header and still pass.
Now that the header is checked it is necessary for a valid header to
be created before the tests can pass.

BUG=chrome-os-partner:32386
BRANCH=samus,auron
TEST=All unit tests pass when running 'make runtests'
In addition real-world testing was done by corrupting the primary
and/or secondary headers of USB stick to ensure that it will
successfully boot if one of the headers is valid.

Change-Id: I7f840a44742fa3ba9a124df29ab5749e4c5a40c1
Signed-off-by: Duncan Laurie <dlaurie@chromium.org>
Reviewed-on: https://chromium-review.googlesource.com/220757
Reviewed-by: Bill Richardson <wfrichar@chromium.org>
Reviewed-by: Nam Nguyen <namnguyen@chromium.org>
2014-10-02 18:24:37 +00:00

732 lines
21 KiB
C

/* Copyright (c) 2013 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*
* Tests for vboot_kernel.c
*/
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "cgptlib.h"
#include "cgptlib_internal.h"
#include "gbb_header.h"
#include "gpt.h"
#include "host_common.h"
#include "load_kernel_fw.h"
#include "test_common.h"
#include "vboot_api.h"
#include "vboot_common.h"
#include "vboot_kernel.h"
#include "vboot_nvstorage.h"
#define LOGCALL(fmt, args...) sprintf(call_log + strlen(call_log), fmt, ##args)
#define TEST_CALLS(expect_log) TEST_STR_EQ(call_log, expect_log, " calls")
#define MOCK_SECTOR_SIZE 512
#define MOCK_SECTOR_COUNT 1024
/* Mock kernel partition */
struct mock_part {
uint32_t start;
uint32_t size;
};
/* Partition list; ends with a 0-size partition. */
#define MOCK_PART_COUNT 8
static struct mock_part mock_parts[MOCK_PART_COUNT];
static int mock_part_next;
/* Mock data */
static char call_log[4096];
static uint8_t kernel_buffer[80000];
static int disk_read_to_fail;
static int disk_write_to_fail;
static int gpt_init_fail;
static int key_block_verify_fail; /* 0=ok, 1=sig, 2=hash */
static int preamble_verify_fail;
static int verify_data_fail;
static RSAPublicKey *mock_data_key;
static int mock_data_key_allocated;
static uint8_t gbb_data[sizeof(GoogleBinaryBlockHeader) + 2048];
static GoogleBinaryBlockHeader *gbb = (GoogleBinaryBlockHeader*)gbb_data;
static VbExDiskHandle_t handle;
static VbNvContext vnc;
static uint8_t shared_data[VB_SHARED_DATA_MIN_SIZE];
static VbSharedDataHeader *shared = (VbSharedDataHeader *)shared_data;
static LoadKernelParams lkp;
static VbKeyBlockHeader kbh;
static VbKernelPreambleHeader kph;
static VbCommonParams cparams;
static uint8_t mock_disk[MOCK_SECTOR_SIZE * MOCK_SECTOR_COUNT];
static GptHeader *mock_gpt_primary =
(GptHeader*)&mock_disk[MOCK_SECTOR_SIZE * 1];
static GptHeader *mock_gpt_secondary =
(GptHeader*)&mock_disk[MOCK_SECTOR_SIZE * (MOCK_SECTOR_COUNT - 1)];
/**
* Prepare a valid GPT header that will pass CheckHeader() tests
*/
static void SetupGptHeader(GptHeader *h, int is_secondary)
{
Memset(h, '\0', MOCK_SECTOR_SIZE);
/* "EFI PART" */
memcpy(h->signature, GPT_HEADER_SIGNATURE, GPT_HEADER_SIGNATURE_SIZE);
h->revision = GPT_HEADER_REVISION;
h->size = MIN_SIZE_OF_HEADER;
/* 16KB: 128 entries of 128 bytes */
h->size_of_entry = sizeof(GptEntry);
h->number_of_entries = TOTAL_ENTRIES_SIZE / h->size_of_entry;
/* Set LBA pointers for primary or secondary header */
if (is_secondary) {
h->my_lba = MOCK_SECTOR_COUNT - GPT_HEADER_SECTORS;
h->entries_lba = h->my_lba - GPT_ENTRIES_SECTORS;
} else {
h->my_lba = GPT_PMBR_SECTORS;
h->entries_lba = h->my_lba + 1;
}
h->first_usable_lba = 2 + GPT_ENTRIES_SECTORS;
h->last_usable_lba = MOCK_SECTOR_COUNT - 2 - GPT_ENTRIES_SECTORS;
h->header_crc32 = HeaderCrc(h);
}
static void ResetCallLog(void)
{
*call_log = 0;
}
/**
* Reset mock data (for use before each test)
*/
static void ResetMocks(void)
{
ResetCallLog();
memset(&mock_disk, 0, sizeof(mock_disk));
SetupGptHeader(mock_gpt_primary, 0);
SetupGptHeader(mock_gpt_secondary, 1);
disk_read_to_fail = -1;
disk_write_to_fail = -1;
gpt_init_fail = 0;
key_block_verify_fail = 0;
preamble_verify_fail = 0;
verify_data_fail = 0;
mock_data_key = (RSAPublicKey *)"TestDataKey";
mock_data_key_allocated = 0;
memset(gbb, 0, sizeof(*gbb));
gbb->major_version = GBB_MAJOR_VER;
gbb->minor_version = GBB_MINOR_VER;
gbb->flags = 0;
memset(&cparams, '\0', sizeof(cparams));
cparams.gbb = gbb;
cparams.gbb_data = gbb;
cparams.gbb_size = sizeof(gbb_data);
memset(&vnc, 0, sizeof(vnc));
VbNvSetup(&vnc);
VbNvTeardown(&vnc); /* So CRC gets generated */
memset(&shared_data, 0, sizeof(shared_data));
VbSharedDataInit(shared, sizeof(shared_data));
shared->kernel_version_tpm = 0x20001;
memset(&lkp, 0, sizeof(lkp));
lkp.nv_context = &vnc;
lkp.shared_data_blob = shared;
lkp.gbb_data = gbb;
lkp.gbb_size = sizeof(gbb_data);
lkp.bytes_per_lba = 512;
lkp.ending_lba = 1023;
lkp.kernel_buffer = kernel_buffer;
lkp.kernel_buffer_size = sizeof(kernel_buffer);
memset(&kbh, 0, sizeof(kbh));
kbh.data_key.key_version = 2;
kbh.key_block_flags = -1;
kbh.key_block_size = sizeof(kbh);
memset(&kph, 0, sizeof(kph));
kph.kernel_version = 1;
kph.preamble_size = 4096 - kbh.key_block_size;
kph.body_signature.data_size = 70000;
kph.bootloader_address = 0xbeadd008;
kph.bootloader_size = 0x1234;
memset(mock_parts, 0, sizeof(mock_parts));
mock_parts[0].start = 100;
mock_parts[0].size = 150; /* 75 KB */
mock_part_next = 0;
}
/* Mocks */
VbError_t VbExDiskRead(VbExDiskHandle_t handle, uint64_t lba_start,
uint64_t lba_count, void *buffer)
{
LOGCALL("VbExDiskRead(h, %d, %d)\n", (int)lba_start, (int)lba_count);
if ((int)lba_start == disk_read_to_fail)
return VBERROR_SIMULATED;
memcpy(buffer, &mock_disk[lba_start * MOCK_SECTOR_SIZE],
lba_count * MOCK_SECTOR_SIZE);
return VBERROR_SUCCESS;
}
VbError_t VbExDiskWrite(VbExDiskHandle_t handle, uint64_t lba_start,
uint64_t lba_count, const void *buffer)
{
LOGCALL("VbExDiskWrite(h, %d, %d)\n", (int)lba_start, (int)lba_count);
if ((int)lba_start == disk_write_to_fail)
return VBERROR_SIMULATED;
memcpy(&mock_disk[lba_start * MOCK_SECTOR_SIZE], buffer,
lba_count * MOCK_SECTOR_SIZE);
return VBERROR_SUCCESS;
}
int GptInit(GptData *gpt)
{
return gpt_init_fail;
}
int GptNextKernelEntry(GptData *gpt, uint64_t *start_sector, uint64_t *size)
{
struct mock_part *p = mock_parts + mock_part_next;
if (!p->size)
return GPT_ERROR_NO_VALID_KERNEL;
gpt->current_kernel = mock_part_next;
*start_sector = p->start;
*size = p->size;
mock_part_next++;
return GPT_SUCCESS;
}
void GetCurrentKernelUniqueGuid(GptData *gpt, void *dest)
{
static char fake_guid[] = "FakeGuid";
memcpy(dest, fake_guid, sizeof(fake_guid));
}
int KeyBlockVerify(const VbKeyBlockHeader *block, uint64_t size,
const VbPublicKey *key, int hash_only) {
if (hash_only && key_block_verify_fail >= 2)
return VBERROR_SIMULATED;
else if (!hash_only && key_block_verify_fail >= 1)
return VBERROR_SIMULATED;
/* Use this as an opportunity to override the key block */
memcpy((void *)block, &kbh, sizeof(kbh));
return VBERROR_SUCCESS;
}
RSAPublicKey *PublicKeyToRSA(const VbPublicKey *key)
{
TEST_EQ(mock_data_key_allocated, 0, " mock data key not allocated");
if (mock_data_key)
mock_data_key_allocated++;
return mock_data_key;
}
void RSAPublicKeyFree(RSAPublicKey* key)
{
TEST_EQ(mock_data_key_allocated, 1, " mock data key allocated");
TEST_PTR_EQ(key, mock_data_key, " data key ptr");
mock_data_key_allocated--;
}
int VerifyKernelPreamble(const VbKernelPreambleHeader *preamble,
uint64_t size, const RSAPublicKey *key)
{
if (preamble_verify_fail)
return VBERROR_SIMULATED;
/* Use this as an opportunity to override the preamble */
memcpy((void *)preamble, &kph, sizeof(kph));
return VBERROR_SUCCESS;
}
int VerifyData(const uint8_t *data, uint64_t size, const VbSignature *sig,
const RSAPublicKey *key)
{
if (verify_data_fail)
return VBERROR_SIMULATED;
return VBERROR_SUCCESS;
}
/**
* Test reading/writing GPT
*/
static void ReadWriteGptTest(void)
{
GptData g;
GptHeader *h;
g.sector_bytes = MOCK_SECTOR_SIZE;
g.drive_sectors = MOCK_SECTOR_COUNT;
g.valid_headers = g.valid_entries = MASK_BOTH;
ResetMocks();
TEST_EQ(AllocAndReadGptData(handle, &g), 0, "AllocAndRead");
TEST_CALLS("VbExDiskRead(h, 1, 1)\n"
"VbExDiskRead(h, 2, 32)\n"
"VbExDiskRead(h, 1023, 1)\n"
"VbExDiskRead(h, 991, 32)\n");
ResetCallLog();
/*
* Valgrind complains about access to uninitialized memory here, so
* zero the primary header before each test.
*/
Memset(g.primary_header, '\0', g.sector_bytes);
TEST_EQ(WriteAndFreeGptData(handle, &g), 0, "WriteAndFree");
TEST_CALLS("");
/*
* Invalidate primary GPT header,
* check that AllocAndReadGptData still succeeds
*/
ResetMocks();
Memset(mock_gpt_primary, '\0', sizeof(*mock_gpt_primary));
TEST_EQ(AllocAndReadGptData(handle, &g), 0,
"AllocAndRead primary invalid");
TEST_EQ(CheckHeader(mock_gpt_primary, 0, g.drive_sectors), 1,
"Primary header is invalid");
TEST_EQ(CheckHeader(mock_gpt_secondary, 1, g.drive_sectors), 0,
"Secondary header is valid");
TEST_CALLS("VbExDiskRead(h, 1, 1)\n"
"VbExDiskRead(h, 1023, 1)\n"
"VbExDiskRead(h, 991, 32)\n");
WriteAndFreeGptData(handle, &g);
/*
* Invalidate secondary GPT header,
* check that AllocAndReadGptData still succeeds
*/
ResetMocks();
Memset(mock_gpt_secondary, '\0', sizeof(*mock_gpt_secondary));
TEST_EQ(AllocAndReadGptData(handle, &g), 0,
"AllocAndRead secondary invalid");
TEST_EQ(CheckHeader(mock_gpt_primary, 0, g.drive_sectors), 0,
"Primary header is valid");
TEST_EQ(CheckHeader(mock_gpt_secondary, 1, g.drive_sectors), 1,
"Secondary header is invalid");
TEST_CALLS("VbExDiskRead(h, 1, 1)\n"
"VbExDiskRead(h, 2, 32)\n"
"VbExDiskRead(h, 1023, 1)\n");
WriteAndFreeGptData(handle, &g);
/*
* Invalidate primary AND secondary GPT header,
* check that AllocAndReadGptData fails.
*/
ResetMocks();
Memset(mock_gpt_primary, '\0', sizeof(*mock_gpt_primary));
Memset(mock_gpt_secondary, '\0', sizeof(*mock_gpt_secondary));
TEST_EQ(AllocAndReadGptData(handle, &g), 1,
"AllocAndRead primary and secondary invalid");
TEST_EQ(CheckHeader(mock_gpt_primary, 0, g.drive_sectors), 1,
"Primary header is invalid");
TEST_EQ(CheckHeader(mock_gpt_secondary, 1, g.drive_sectors), 1,
"Secondary header is invalid");
TEST_CALLS("VbExDiskRead(h, 1, 1)\n"
"VbExDiskRead(h, 1023, 1)\n");
WriteAndFreeGptData(handle, &g);
/*
* Invalidate primary GPT header and check that it is
* repaired by GptRepair().
*
* This would normally be called by LoadKernel()->GptInit()
* but this callback is mocked in these tests.
*/
ResetMocks();
Memset(mock_gpt_primary, '\0', sizeof(*mock_gpt_primary));
TEST_EQ(AllocAndReadGptData(handle, &g), 0,
"Fix Primary GPT: AllocAndRead");
/* Call GptRepair() with input indicating secondary GPT is valid */
g.valid_headers = g.valid_entries = MASK_SECONDARY;
GptRepair(&g);
TEST_EQ(WriteAndFreeGptData(handle, &g), 0,
"Fix Primary GPT: WriteAndFreeGptData");
TEST_CALLS("VbExDiskRead(h, 1, 1)\n"
"VbExDiskRead(h, 1023, 1)\n"
"VbExDiskRead(h, 991, 32)\n"
"VbExDiskWrite(h, 1, 1)\n"
"VbExDiskWrite(h, 2, 32)\n");
TEST_EQ(CheckHeader(mock_gpt_primary, 0, g.drive_sectors), 0,
"Fix Primary GPT: Primary header is valid");
/*
* Invalidate secondary GPT header and check that it can be
* repaired by GptRepair().
*
* This would normally be called by LoadKernel()->GptInit()
* but this callback is mocked in these tests.
*/
ResetMocks();
Memset(mock_gpt_secondary, '\0', sizeof(*mock_gpt_secondary));
TEST_EQ(AllocAndReadGptData(handle, &g), 0,
"Fix Secondary GPT: AllocAndRead");
/* Call GptRepair() with input indicating primary GPT is valid */
g.valid_headers = g.valid_entries = MASK_PRIMARY;
GptRepair(&g);
TEST_EQ(WriteAndFreeGptData(handle, &g), 0,
"Fix Secondary GPT: WriteAndFreeGptData");
TEST_CALLS("VbExDiskRead(h, 1, 1)\n"
"VbExDiskRead(h, 2, 32)\n"
"VbExDiskRead(h, 1023, 1)\n"
"VbExDiskWrite(h, 1023, 1)\n"
"VbExDiskWrite(h, 991, 32)\n");
TEST_EQ(CheckHeader(mock_gpt_secondary, 1, g.drive_sectors), 0,
"Fix Secondary GPT: Secondary header is valid");
/* Data which is changed is written */
ResetMocks();
AllocAndReadGptData(handle, &g);
g.modified |= GPT_MODIFIED_HEADER1 | GPT_MODIFIED_ENTRIES1;
ResetCallLog();
Memset(g.primary_header, '\0', g.sector_bytes);
h = (GptHeader*)g.primary_header;
h->entries_lba = 2;
TEST_EQ(WriteAndFreeGptData(handle, &g), 0, "WriteAndFree mod 1");
TEST_CALLS("VbExDiskWrite(h, 1, 1)\n"
"VbExDiskWrite(h, 2, 32)\n");
/* Data which is changed is written */
ResetMocks();
AllocAndReadGptData(handle, &g);
g.modified = -1;
ResetCallLog();
Memset(g.primary_header, '\0', g.sector_bytes);
h = (GptHeader*)g.primary_header;
h->entries_lba = 2;
h = (GptHeader*)g.secondary_header;
h->entries_lba = 991;
TEST_EQ(WriteAndFreeGptData(handle, &g), 0, "WriteAndFree mod all");
TEST_CALLS("VbExDiskWrite(h, 1, 1)\n"
"VbExDiskWrite(h, 2, 32)\n"
"VbExDiskWrite(h, 1023, 1)\n"
"VbExDiskWrite(h, 991, 32)\n");
/* If legacy signature, don't modify GPT header/entries 1 */
ResetMocks();
AllocAndReadGptData(handle, &g);
h = (GptHeader *)g.primary_header;
memcpy(h->signature, GPT_HEADER_SIGNATURE2, GPT_HEADER_SIGNATURE_SIZE);
g.modified = -1;
ResetCallLog();
TEST_EQ(WriteAndFreeGptData(handle, &g), 0, "WriteAndFree mod all");
TEST_CALLS("VbExDiskWrite(h, 1023, 1)\n"
"VbExDiskWrite(h, 991, 32)\n");
/* Error reading */
ResetMocks();
disk_read_to_fail = 1;
TEST_NEQ(AllocAndReadGptData(handle, &g), 0, "AllocAndRead disk fail");
Memset(g.primary_header, '\0', g.sector_bytes);
WriteAndFreeGptData(handle, &g);
ResetMocks();
disk_read_to_fail = 2;
TEST_NEQ(AllocAndReadGptData(handle, &g), 0, "AllocAndRead disk fail");
Memset(g.primary_header, '\0', g.sector_bytes);
WriteAndFreeGptData(handle, &g);
ResetMocks();
disk_read_to_fail = 991;
TEST_NEQ(AllocAndReadGptData(handle, &g), 0, "AllocAndRead disk fail");
Memset(g.primary_header, '\0', g.sector_bytes);
WriteAndFreeGptData(handle, &g);
ResetMocks();
disk_read_to_fail = 1023;
TEST_NEQ(AllocAndReadGptData(handle, &g), 0, "AllocAndRead disk fail");
Memset(g.primary_header, '\0', g.sector_bytes);
WriteAndFreeGptData(handle, &g);
/* Error writing */
ResetMocks();
disk_write_to_fail = 1;
AllocAndReadGptData(handle, &g);
g.modified = -1;
Memset(g.primary_header, '\0', g.sector_bytes);
TEST_NEQ(WriteAndFreeGptData(handle, &g), 0, "WriteAndFree disk fail");
ResetMocks();
disk_write_to_fail = 2;
AllocAndReadGptData(handle, &g);
g.modified = -1;
Memset(g.primary_header, '\0', g.sector_bytes);
h = (GptHeader*)g.primary_header;
h->entries_lba = 2;
TEST_NEQ(WriteAndFreeGptData(handle, &g), 0, "WriteAndFree disk fail");
ResetMocks();
disk_write_to_fail = 991;
AllocAndReadGptData(handle, &g);
g.modified = -1;
Memset(g.primary_header, '\0', g.sector_bytes);
TEST_NEQ(WriteAndFreeGptData(handle, &g), 0, "WriteAndFree disk fail");
ResetMocks();
disk_write_to_fail = 1023;
AllocAndReadGptData(handle, &g);
g.modified = -1;
Memset(g.primary_header, '\0', g.sector_bytes);
TEST_NEQ(WriteAndFreeGptData(handle, &g), 0, "WriteAndFree disk fail");
}
/**
* Trivial invalid calls to LoadKernel()
*/
static void InvalidParamsTest(void)
{
ResetMocks();
lkp.bytes_per_lba = 0;
TEST_EQ(LoadKernel(&lkp, &cparams), VBERROR_INVALID_PARAMETER,
"Bad lba size");
ResetMocks();
lkp.ending_lba = 0;
TEST_EQ(LoadKernel(&lkp, &cparams), VBERROR_INVALID_PARAMETER,
"Bad lba count");
ResetMocks();
lkp.bytes_per_lba = 128*1024;
TEST_EQ(LoadKernel(&lkp, &cparams), VBERROR_INVALID_PARAMETER,
"Huge lba size");
ResetMocks();
disk_read_to_fail = 1;
TEST_EQ(LoadKernel(&lkp, &cparams), VBERROR_NO_KERNEL_FOUND,
"Can't read disk");
ResetMocks();
gpt_init_fail = 1;
TEST_EQ(LoadKernel(&lkp, &cparams), VBERROR_NO_KERNEL_FOUND,
"Bad GPT");
}
static void LoadKernelTest(void)
{
uint32_t u;
ResetMocks();
TEST_EQ(LoadKernel(&lkp, &cparams), 0, "First kernel good");
TEST_EQ(lkp.partition_number, 1, " part num");
TEST_EQ(lkp.bootloader_address, 0xbeadd008, " bootloader addr");
TEST_EQ(lkp.bootloader_size, 0x1234, " bootloader size");
TEST_STR_EQ((char *)lkp.partition_guid, "FakeGuid", " guid");
VbNvGet(&vnc, VBNV_RECOVERY_REQUEST, &u);
TEST_EQ(u, 0, " recovery request");
ResetMocks();
mock_parts[1].start = 300;
mock_parts[1].size = 150;
TEST_EQ(LoadKernel(&lkp, &cparams), 0, "Two good kernels");
TEST_EQ(lkp.partition_number, 1, " part num");
TEST_EQ(mock_part_next, 1, " didn't read second one");
/* Fail if no kernels found */
ResetMocks();
mock_parts[0].size = 0;
TEST_EQ(LoadKernel(&lkp, &cparams), VBERROR_NO_KERNEL_FOUND, "No kernels");
VbNvGet(&vnc, VBNV_RECOVERY_REQUEST, &u);
TEST_EQ(u, VBNV_RECOVERY_RW_NO_OS, " recovery request");
/* Skip kernels which are too small */
ResetMocks();
mock_parts[0].size = 10;
TEST_EQ(LoadKernel(&lkp, &cparams), VBERROR_INVALID_KERNEL_FOUND, "Too small");
VbNvGet(&vnc, VBNV_RECOVERY_REQUEST, &u);
TEST_EQ(u, VBNV_RECOVERY_RW_INVALID_OS, " recovery request");
ResetMocks();
disk_read_to_fail = 100;
TEST_EQ(LoadKernel(&lkp, &cparams), VBERROR_INVALID_KERNEL_FOUND,
"Fail reading kernel start");
ResetMocks();
key_block_verify_fail = 1;
TEST_EQ(LoadKernel(&lkp, &cparams), VBERROR_INVALID_KERNEL_FOUND,
"Fail key block sig");
/* In dev mode, fail if hash is bad too */
ResetMocks();
lkp.boot_flags |= BOOT_FLAG_DEVELOPER;
key_block_verify_fail = 2;
TEST_EQ(LoadKernel(&lkp, &cparams), VBERROR_INVALID_KERNEL_FOUND,
"Fail key block dev hash");
/* But just bad sig is ok */
ResetMocks();
lkp.boot_flags |= BOOT_FLAG_DEVELOPER;
key_block_verify_fail = 1;
TEST_EQ(LoadKernel(&lkp, &cparams), 0, "Succeed key block dev sig");
/* In dev mode and requiring signed kernel, fail if sig is bad */
ResetMocks();
lkp.boot_flags |= BOOT_FLAG_DEVELOPER;
VbNvSet(&vnc, VBNV_DEV_BOOT_SIGNED_ONLY, 1);
VbNvTeardown(&vnc);
key_block_verify_fail = 1;
TEST_EQ(LoadKernel(&lkp, &cparams), VBERROR_INVALID_KERNEL_FOUND,
"Fail key block dev sig");
/* Check key block flag mismatches */
ResetMocks();
kbh.key_block_flags =
KEY_BLOCK_FLAG_RECOVERY_0 | KEY_BLOCK_FLAG_DEVELOPER_1;
TEST_EQ(LoadKernel(&lkp, &cparams), VBERROR_INVALID_KERNEL_FOUND,
"Key block dev flag mismatch");
ResetMocks();
kbh.key_block_flags =
KEY_BLOCK_FLAG_RECOVERY_1 | KEY_BLOCK_FLAG_DEVELOPER_0;
TEST_EQ(LoadKernel(&lkp, &cparams), VBERROR_INVALID_KERNEL_FOUND,
"Key block rec flag mismatch");
ResetMocks();
lkp.boot_flags |= BOOT_FLAG_RECOVERY;
kbh.key_block_flags =
KEY_BLOCK_FLAG_RECOVERY_1 | KEY_BLOCK_FLAG_DEVELOPER_1;
TEST_EQ(LoadKernel(&lkp, &cparams), VBERROR_INVALID_KERNEL_FOUND,
"Key block recdev flag mismatch");
ResetMocks();
lkp.boot_flags |= BOOT_FLAG_RECOVERY | BOOT_FLAG_DEVELOPER;
kbh.key_block_flags =
KEY_BLOCK_FLAG_RECOVERY_1 | KEY_BLOCK_FLAG_DEVELOPER_0;
TEST_EQ(LoadKernel(&lkp, &cparams), VBERROR_INVALID_KERNEL_FOUND,
"Key block rec!dev flag mismatch");
ResetMocks();
kbh.data_key.key_version = 1;
TEST_EQ(LoadKernel(&lkp, &cparams), VBERROR_INVALID_KERNEL_FOUND,
"Key block kernel key rollback");
ResetMocks();
kbh.data_key.key_version = 0x10000;
TEST_EQ(LoadKernel(&lkp, &cparams), VBERROR_INVALID_KERNEL_FOUND,
"Key block kernel key version too big");
ResetMocks();
kbh.data_key.key_version = 3;
TEST_EQ(LoadKernel(&lkp, &cparams), 0, "Key block version roll forward");
TEST_EQ(shared->kernel_version_tpm, 0x30001, " shared version");
ResetMocks();
kbh.data_key.key_version = 3;
mock_parts[1].start = 300;
mock_parts[1].size = 150;
TEST_EQ(LoadKernel(&lkp, &cparams), 0, "Two kernels roll forward");
TEST_EQ(mock_part_next, 2, " read both");
TEST_EQ(shared->kernel_version_tpm, 0x30001, " shared version");
ResetMocks();
kbh.data_key.key_version = 1;
lkp.boot_flags |= BOOT_FLAG_DEVELOPER;
TEST_EQ(LoadKernel(&lkp, &cparams), 0, "Key version ignored in dev mode");
ResetMocks();
kbh.data_key.key_version = 1;
lkp.boot_flags |= BOOT_FLAG_RECOVERY;
TEST_EQ(LoadKernel(&lkp, &cparams), 0, "Key version ignored in rec mode");
ResetMocks();
mock_data_key = NULL;
TEST_EQ(LoadKernel(&lkp, &cparams), VBERROR_INVALID_KERNEL_FOUND,
"Bad data key");
ResetMocks();
preamble_verify_fail = 1;
TEST_EQ(LoadKernel(&lkp, &cparams), VBERROR_INVALID_KERNEL_FOUND,
"Bad preamble");
ResetMocks();
kph.kernel_version = 0;
TEST_EQ(LoadKernel(&lkp, &cparams), VBERROR_INVALID_KERNEL_FOUND,
"Kernel version rollback");
ResetMocks();
kph.kernel_version = 0;
lkp.boot_flags |= BOOT_FLAG_DEVELOPER;
TEST_EQ(LoadKernel(&lkp, &cparams), 0, "Kernel version ignored in dev mode");
ResetMocks();
kph.kernel_version = 0;
lkp.boot_flags |= BOOT_FLAG_RECOVERY;
TEST_EQ(LoadKernel(&lkp, &cparams), 0, "Kernel version ignored in rec mode");
ResetMocks();
kph.preamble_size |= 0x07;
TEST_EQ(LoadKernel(&lkp, &cparams), VBERROR_INVALID_KERNEL_FOUND,
"Kernel body offset");
/* Check getting kernel load address from header */
ResetMocks();
kph.body_load_address = (size_t)kernel_buffer;
lkp.kernel_buffer = NULL;
TEST_EQ(LoadKernel(&lkp, &cparams), 0, "Get load address from preamble");
TEST_PTR_EQ(lkp.kernel_buffer, kernel_buffer, " address");
/* Size is rounded up to nearest sector */
TEST_EQ(lkp.kernel_buffer_size, 70144, " size");
ResetMocks();
lkp.kernel_buffer_size = 8192;
TEST_EQ(LoadKernel(&lkp, &cparams), VBERROR_INVALID_KERNEL_FOUND,
"Kernel too big for buffer");
ResetMocks();
mock_parts[0].size = 130;
TEST_EQ(LoadKernel(&lkp, &cparams), VBERROR_INVALID_KERNEL_FOUND,
"Kernel too big for partition");
ResetMocks();
disk_read_to_fail = 108;
TEST_EQ(LoadKernel(&lkp, &cparams), VBERROR_INVALID_KERNEL_FOUND,
"Fail reading kernel data");
ResetMocks();
verify_data_fail = 1;
TEST_EQ(LoadKernel(&lkp, &cparams), VBERROR_INVALID_KERNEL_FOUND, "Bad data");
}
int main(void)
{
ReadWriteGptTest();
InvalidParamsTest();
LoadKernelTest();
if (vboot_api_stub_check_memory())
return 255;
return gTestSuccess ? 0 : 255;
}