mirror of
https://github.com/Telecominfraproject/OpenCellular.git
synced 2025-11-24 02:05:01 +00:00
Presently kernel load address and buffer size are programmed in the
u-boot device tree. There is no reason for this: the address and size
are part of the vboot encapsulation headers. Duplicating this
information hardcoded in the device tree does not bring any benefit
and is in fact harmful, as it is easy to get out of sync.
A better way of doing things is to derive kernel load address and size
from the appropriate vboot header. ARM people object to this, as they
want the very same kernel blob operate on devices with DRAM mapped to
different address ranges.
The suggested solution is to exclude the kernel memory section from
the device tree on the platforms where the load address could be
safely taken from the vboot header. In this case u-boot will pass
address of zero to vboot, which will know to derive the address/size
from the appropriate header. vboot then rewrites fields of the u-boot
supplied structure with actual address and size of the kernel blob.
There is no sanity check yet, as it is presumed that there is enough
memory to load any kernel and u-boot does not use the space above
0x100000 for at least 16 megabytes (the kernel partition size). On x86
platform the check could be verify that the top of the kernel space is
well below the stack.
BUG=chrome-os-partner:11994
TEST=manual
. with the appropriate u-boot change run a Link target through a
FAFT cycle, observe it succeed.
Change-Id: I3c2c2cefb1e31d16ac497a01894bf32638479ed7
Signed-off-by: Vadim Bendebury <vbendeb@chromium.org>
Reviewed-on: https://gerrit.chromium.org/gerrit/29038
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Doug Anderson <dianders@chromium.org>
Reviewed-by: Bill Richardson <wfrichar@chromium.org>
Reviewed-by: Randall Spangler <rspangler@chromium.org>
Reviewed-by: Simon Glass <sjg@chromium.org>
Commit-Ready: Bill Richardson <wfrichar@chromium.org>
543 lines
20 KiB
C
543 lines
20 KiB
C
/* Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*
|
|
* Functions for loading a kernel from disk.
|
|
* (Firmware portion)
|
|
*/
|
|
|
|
|
|
#include "cgptlib.h"
|
|
#include "cgptlib_internal.h"
|
|
#include "gbb_header.h"
|
|
#include "load_kernel_fw.h"
|
|
#include "utility.h"
|
|
#include "vboot_api.h"
|
|
#include "vboot_common.h"
|
|
#include "vboot_kernel.h"
|
|
|
|
#define KBUF_SIZE 65536 /* Bytes to read at start of kernel partition */
|
|
#define LOWEST_TPM_VERSION 0xffffffff
|
|
|
|
typedef enum BootMode {
|
|
kBootRecovery = 0, /* Recovery firmware, regardless of dev switch position */
|
|
kBootNormal = 1, /* Normal boot - kernel must be verified */
|
|
kBootDev = 2 /* Developer boot - self-signed kernel ok */
|
|
} BootMode;
|
|
|
|
|
|
/* Allocates and reads GPT data from the drive. The sector_bytes and
|
|
* drive_sectors fields should be filled on input. The primary and
|
|
* secondary header and entries are filled on output.
|
|
*
|
|
* Returns 0 if successful, 1 if error. */
|
|
int AllocAndReadGptData(VbExDiskHandle_t disk_handle, GptData* gptdata) {
|
|
|
|
uint64_t entries_sectors = TOTAL_ENTRIES_SIZE / gptdata->sector_bytes;
|
|
|
|
/* No data to be written yet */
|
|
gptdata->modified = 0;
|
|
|
|
/* Allocate all buffers */
|
|
gptdata->primary_header = (uint8_t*)VbExMalloc(gptdata->sector_bytes);
|
|
gptdata->secondary_header = (uint8_t*)VbExMalloc(gptdata->sector_bytes);
|
|
gptdata->primary_entries = (uint8_t*)VbExMalloc(TOTAL_ENTRIES_SIZE);
|
|
gptdata->secondary_entries = (uint8_t*)VbExMalloc(TOTAL_ENTRIES_SIZE);
|
|
|
|
if (gptdata->primary_header == NULL || gptdata->secondary_header == NULL ||
|
|
gptdata->primary_entries == NULL || gptdata->secondary_entries == NULL)
|
|
return 1;
|
|
|
|
/* Read data from the drive, skipping the protective MBR */
|
|
if (0 != VbExDiskRead(disk_handle, 1, 1, gptdata->primary_header))
|
|
return 1;
|
|
if (0 != VbExDiskRead(disk_handle, 2, entries_sectors,
|
|
gptdata->primary_entries))
|
|
return 1;
|
|
if (0 != VbExDiskRead(disk_handle,
|
|
gptdata->drive_sectors - entries_sectors - 1,
|
|
entries_sectors, gptdata->secondary_entries))
|
|
return 1;
|
|
if (0 != VbExDiskRead(disk_handle, gptdata->drive_sectors - 1, 1,
|
|
gptdata->secondary_header))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Writes any changes for the GPT data back to the drive, then frees
|
|
* the buffers.
|
|
*
|
|
* Returns 0 if successful, 1 if error. */
|
|
int WriteAndFreeGptData(VbExDiskHandle_t disk_handle, GptData* gptdata) {
|
|
|
|
uint64_t entries_sectors = TOTAL_ENTRIES_SIZE / gptdata->sector_bytes;
|
|
|
|
if (gptdata->primary_header) {
|
|
if (gptdata->modified & GPT_MODIFIED_HEADER1) {
|
|
VBDEBUG(("Updating GPT header 1\n"));
|
|
if (0 != VbExDiskWrite(disk_handle, 1, 1, gptdata->primary_header))
|
|
return 1;
|
|
}
|
|
VbExFree(gptdata->primary_header);
|
|
}
|
|
|
|
if (gptdata->primary_entries) {
|
|
if (gptdata->modified & GPT_MODIFIED_ENTRIES1) {
|
|
VBDEBUG(("Updating GPT entries 1\n"));
|
|
if (0 != VbExDiskWrite(disk_handle, 2, entries_sectors,
|
|
gptdata->primary_entries))
|
|
return 1;
|
|
}
|
|
VbExFree(gptdata->primary_entries);
|
|
}
|
|
|
|
if (gptdata->secondary_entries) {
|
|
if (gptdata->modified & GPT_MODIFIED_ENTRIES2) {
|
|
VBDEBUG(("Updating GPT header 2\n"));
|
|
if (0 != VbExDiskWrite(disk_handle,
|
|
gptdata->drive_sectors - entries_sectors - 1,
|
|
entries_sectors, gptdata->secondary_entries))
|
|
return 1;
|
|
}
|
|
VbExFree(gptdata->secondary_entries);
|
|
}
|
|
|
|
if (gptdata->secondary_header) {
|
|
if (gptdata->modified & GPT_MODIFIED_HEADER2) {
|
|
VBDEBUG(("Updating GPT entries 2\n"));
|
|
if (0 != VbExDiskWrite(disk_handle, gptdata->drive_sectors - 1, 1,
|
|
gptdata->secondary_header))
|
|
return 1;
|
|
}
|
|
VbExFree(gptdata->secondary_header);
|
|
}
|
|
|
|
/* Success */
|
|
return 0;
|
|
}
|
|
|
|
/* disable MSVC warning on const logical expression (as in } while(0);) */
|
|
__pragma(warning(disable: 4127))
|
|
|
|
|
|
VbError_t LoadKernel(LoadKernelParams* params) {
|
|
VbSharedDataHeader* shared = (VbSharedDataHeader*)params->shared_data_blob;
|
|
VbSharedDataKernelCall* shcall = NULL;
|
|
VbNvContext* vnc = params->nv_context;
|
|
GoogleBinaryBlockHeader* gbb = (GoogleBinaryBlockHeader*)params->gbb_data;
|
|
VbPublicKey* kernel_subkey;
|
|
GptData gpt;
|
|
uint64_t part_start, part_size;
|
|
uint64_t blba;
|
|
uint64_t kbuf_sectors;
|
|
uint8_t* kbuf = NULL;
|
|
int found_partitions = 0;
|
|
int good_partition = -1;
|
|
int good_partition_key_block_valid = 0;
|
|
uint32_t lowest_version = LOWEST_TPM_VERSION;
|
|
int rec_switch, dev_switch;
|
|
BootMode boot_mode;
|
|
uint32_t require_official_os = 0;
|
|
|
|
VbError_t retval = VBERROR_UNKNOWN;
|
|
int recovery = VBNV_RECOVERY_RO_UNSPECIFIED;
|
|
|
|
/* Sanity Checks */
|
|
if (!params ||
|
|
!params->bytes_per_lba ||
|
|
!params->ending_lba) {
|
|
VBDEBUG(("LoadKernel() called with invalid params\n"));
|
|
retval = VBERROR_INVALID_PARAMETER;
|
|
goto LoadKernelExit;
|
|
}
|
|
|
|
/* Clear output params in case we fail */
|
|
params->partition_number = 0;
|
|
params->bootloader_address = 0;
|
|
params->bootloader_size = 0;
|
|
|
|
/* Calculate switch positions and boot mode */
|
|
rec_switch = (BOOT_FLAG_RECOVERY & params->boot_flags ? 1 : 0);
|
|
dev_switch = (BOOT_FLAG_DEVELOPER & params->boot_flags ? 1 : 0);
|
|
if (rec_switch) {
|
|
boot_mode = kBootRecovery;
|
|
} else if (dev_switch) {
|
|
boot_mode = kBootDev;
|
|
VbNvGet(vnc, VBNV_DEV_BOOT_SIGNED_ONLY, &require_official_os);
|
|
} else {
|
|
boot_mode = kBootNormal;
|
|
}
|
|
|
|
/* Set up tracking for this call. This wraps around if called many times,
|
|
* so we need to initialize the call entry each time. */
|
|
shcall = shared->lk_calls + (shared->lk_call_count
|
|
& (VBSD_MAX_KERNEL_CALLS - 1));
|
|
Memset(shcall, 0, sizeof(VbSharedDataKernelCall));
|
|
shcall->boot_flags = (uint32_t)params->boot_flags;
|
|
shcall->boot_mode = boot_mode;
|
|
shcall->sector_size = (uint32_t)params->bytes_per_lba;
|
|
shcall->sector_count = params->ending_lba + 1;
|
|
shared->lk_call_count++;
|
|
|
|
/* Initialization */
|
|
blba = params->bytes_per_lba;
|
|
kbuf_sectors = KBUF_SIZE / blba;
|
|
if (0 == kbuf_sectors) {
|
|
VBDEBUG(("LoadKernel() called with sector size > KBUF_SIZE\n"));
|
|
retval = VBERROR_INVALID_PARAMETER;
|
|
goto LoadKernelExit;
|
|
}
|
|
|
|
if (kBootRecovery == boot_mode) {
|
|
/* Use the recovery key to verify the kernel */
|
|
kernel_subkey = (VbPublicKey*)((uint8_t*)gbb + gbb->recovery_key_offset);
|
|
} else {
|
|
/* Use the kernel subkey passed from LoadFirmware(). */
|
|
kernel_subkey = &shared->kernel_subkey;
|
|
}
|
|
|
|
do {
|
|
/* Read GPT data */
|
|
gpt.sector_bytes = (uint32_t)blba;
|
|
gpt.drive_sectors = params->ending_lba + 1;
|
|
if (0 != AllocAndReadGptData(params->disk_handle, &gpt)) {
|
|
VBDEBUG(("Unable to read GPT data\n"));
|
|
shcall->check_result = VBSD_LKC_CHECK_GPT_READ_ERROR;
|
|
break;
|
|
}
|
|
|
|
/* Initialize GPT library */
|
|
if (GPT_SUCCESS != GptInit(&gpt)) {
|
|
VBDEBUG(("Error parsing GPT\n"));
|
|
shcall->check_result = VBSD_LKC_CHECK_GPT_PARSE_ERROR;
|
|
break;
|
|
}
|
|
|
|
/* Allocate kernel header buffers */
|
|
kbuf = (uint8_t*)VbExMalloc(KBUF_SIZE);
|
|
if (!kbuf)
|
|
break;
|
|
|
|
/* Loop over candidate kernel partitions */
|
|
while (GPT_SUCCESS == GptNextKernelEntry(&gpt, &part_start, &part_size)) {
|
|
VbSharedDataKernelPart* shpart = NULL;
|
|
VbKeyBlockHeader* key_block;
|
|
VbKernelPreambleHeader* preamble;
|
|
RSAPublicKey* data_key = NULL;
|
|
uint64_t key_version;
|
|
uint32_t combined_version;
|
|
uint64_t body_offset;
|
|
uint64_t body_offset_sectors;
|
|
uint64_t body_sectors;
|
|
int key_block_valid = 1;
|
|
|
|
VBDEBUG(("Found kernel entry at %" PRIu64 " size %" PRIu64 "\n",
|
|
part_start, part_size));
|
|
|
|
/* Set up tracking for this partition. This wraps around if called
|
|
* many times, so initialize the partition entry each time. */
|
|
shpart = shcall->parts + (shcall->kernel_parts_found
|
|
& (VBSD_MAX_KERNEL_PARTS - 1));
|
|
Memset(shpart, 0, sizeof(VbSharedDataKernelPart));
|
|
shpart->sector_start = part_start;
|
|
shpart->sector_count = part_size;
|
|
/* TODO: GPT partitions start at 1, but cgptlib starts them at 0.
|
|
* Adjust here, until cgptlib is fixed. */
|
|
shpart->gpt_index = (uint8_t)(gpt.current_kernel + 1);
|
|
shcall->kernel_parts_found++;
|
|
|
|
/* Found at least one kernel partition. */
|
|
found_partitions++;
|
|
|
|
/* Read the first part of the kernel partition. */
|
|
if (part_size < kbuf_sectors) {
|
|
VBDEBUG(("Partition too small to hold kernel.\n"));
|
|
shpart->check_result = VBSD_LKP_CHECK_TOO_SMALL;
|
|
goto bad_kernel;
|
|
}
|
|
|
|
if (0 != VbExDiskRead(params->disk_handle, part_start, kbuf_sectors,
|
|
kbuf)) {
|
|
VBDEBUG(("Unable to read start of partition.\n"));
|
|
shpart->check_result = VBSD_LKP_CHECK_READ_START;
|
|
goto bad_kernel;
|
|
}
|
|
|
|
/* Verify the key block. */
|
|
key_block = (VbKeyBlockHeader*)kbuf;
|
|
if (0 != KeyBlockVerify(key_block, KBUF_SIZE, kernel_subkey, 0)) {
|
|
VBDEBUG(("Verifying key block signature failed.\n"));
|
|
shpart->check_result = VBSD_LKP_CHECK_KEY_BLOCK_SIG;
|
|
|
|
key_block_valid = 0;
|
|
|
|
/* If we're not in developer mode, this kernel is bad. */
|
|
if (kBootDev != boot_mode)
|
|
goto bad_kernel;
|
|
|
|
/* In developer mode, we can explictly disallow self-signed kernels */
|
|
if (require_official_os) {
|
|
VBDEBUG(("Self-signed custom kernels are not enabled.\n"));
|
|
shpart->check_result = VBSD_LKP_CHECK_SELF_SIGNED;
|
|
goto bad_kernel;
|
|
}
|
|
|
|
/* Allow the kernel if the SHA-512 hash of the key block is valid. */
|
|
if (0 != KeyBlockVerify(key_block, KBUF_SIZE, kernel_subkey, 1)) {
|
|
VBDEBUG(("Verifying key block hash failed.\n"));
|
|
shpart->check_result = VBSD_LKP_CHECK_KEY_BLOCK_HASH;
|
|
goto bad_kernel;
|
|
}
|
|
}
|
|
|
|
/* Check the key block flags against the current boot mode. */
|
|
if (!(key_block->key_block_flags &
|
|
(dev_switch ? KEY_BLOCK_FLAG_DEVELOPER_1 :
|
|
KEY_BLOCK_FLAG_DEVELOPER_0))) {
|
|
VBDEBUG(("Key block developer flag mismatch.\n"));
|
|
shpart->check_result = VBSD_LKP_CHECK_DEV_MISMATCH;
|
|
key_block_valid = 0;
|
|
}
|
|
if (!(key_block->key_block_flags &
|
|
(rec_switch ? KEY_BLOCK_FLAG_RECOVERY_1 :
|
|
KEY_BLOCK_FLAG_RECOVERY_0))) {
|
|
VBDEBUG(("Key block recovery flag mismatch.\n"));
|
|
shpart->check_result = VBSD_LKP_CHECK_REC_MISMATCH;
|
|
key_block_valid = 0;
|
|
}
|
|
|
|
/* Check for rollback of key version except in recovery mode. */
|
|
key_version = key_block->data_key.key_version;
|
|
if (kBootRecovery != boot_mode) {
|
|
if (key_version < (shared->kernel_version_tpm >> 16)) {
|
|
VBDEBUG(("Key version too old.\n"));
|
|
shpart->check_result = VBSD_LKP_CHECK_KEY_ROLLBACK;
|
|
key_block_valid = 0;
|
|
}
|
|
if (key_version > 0xFFFF) {
|
|
/* Key version is stored in 16 bits in the TPM, so key versions
|
|
* greater than 0xFFFF can't be stored properly. */
|
|
VBDEBUG(("Key version > 0xFFFF.\n"));
|
|
shpart->check_result = VBSD_LKP_CHECK_KEY_ROLLBACK;
|
|
key_block_valid = 0;
|
|
}
|
|
}
|
|
|
|
/* If we're not in developer mode, require the key block to be valid. */
|
|
if (kBootDev != boot_mode && !key_block_valid) {
|
|
VBDEBUG(("Key block is invalid.\n"));
|
|
goto bad_kernel;
|
|
}
|
|
|
|
/* Get the key for preamble/data verification from the key block. */
|
|
data_key = PublicKeyToRSA(&key_block->data_key);
|
|
if (!data_key) {
|
|
VBDEBUG(("Data key bad.\n"));
|
|
shpart->check_result = VBSD_LKP_CHECK_DATA_KEY_PARSE;
|
|
goto bad_kernel;
|
|
}
|
|
|
|
/* Verify the preamble, which follows the key block */
|
|
preamble = (VbKernelPreambleHeader*)(kbuf + key_block->key_block_size);
|
|
if ((0 != VerifyKernelPreamble(preamble,
|
|
KBUF_SIZE - key_block->key_block_size,
|
|
data_key))) {
|
|
VBDEBUG(("Preamble verification failed.\n"));
|
|
shpart->check_result = VBSD_LKP_CHECK_VERIFY_PREAMBLE;
|
|
goto bad_kernel;
|
|
}
|
|
|
|
/* If the key block is valid and we're not in recovery mode, check for
|
|
* rollback of the kernel version. */
|
|
combined_version = (uint32_t)((key_version << 16) |
|
|
(preamble->kernel_version & 0xFFFF));
|
|
shpart->combined_version = combined_version;
|
|
if (key_block_valid && kBootRecovery != boot_mode) {
|
|
if (combined_version < shared->kernel_version_tpm) {
|
|
VBDEBUG(("Kernel version too low.\n"));
|
|
shpart->check_result = VBSD_LKP_CHECK_KERNEL_ROLLBACK;
|
|
/* If we're not in developer mode, kernel version must be valid. */
|
|
if (kBootDev != boot_mode)
|
|
goto bad_kernel;
|
|
}
|
|
}
|
|
|
|
VBDEBUG(("Kernel preamble is good.\n"));
|
|
shpart->check_result = VBSD_LKP_CHECK_PREAMBLE_VALID;
|
|
|
|
/* Check for lowest version from a valid header. */
|
|
if (key_block_valid && lowest_version > combined_version)
|
|
lowest_version = combined_version;
|
|
else {
|
|
VBDEBUG(("Key block valid: %d\n", key_block_valid));
|
|
VBDEBUG(("Combined version: %u\n", (unsigned) combined_version));
|
|
}
|
|
|
|
/* If we already have a good kernel, no need to read another
|
|
* one; we only needed to look at the versions to check for
|
|
* rollback. So skip to the next kernel preamble. */
|
|
if (-1 != good_partition)
|
|
continue;
|
|
|
|
/* Verify kernel body starts at a multiple of the sector size. */
|
|
body_offset = key_block->key_block_size + preamble->preamble_size;
|
|
if (0 != body_offset % blba) {
|
|
VBDEBUG(("Kernel body not at multiple of sector size.\n"));
|
|
shpart->check_result = VBSD_LKP_CHECK_BODY_OFFSET;
|
|
goto bad_kernel;
|
|
}
|
|
body_offset_sectors = body_offset / blba;
|
|
|
|
body_sectors = (preamble->body_signature.data_size + blba - 1) / blba;
|
|
if (!params->kernel_buffer) {
|
|
/* Get kernel load address and size from the header. */
|
|
params->kernel_buffer = (void*) ((long)preamble->body_load_address);
|
|
params->kernel_buffer_size = body_sectors * blba;
|
|
} else {
|
|
/* Verify kernel body fits in the buffer */
|
|
if (body_sectors * blba > params->kernel_buffer_size) {
|
|
VBDEBUG(("Kernel body doesn't fit in memory.\n"));
|
|
shpart->check_result = VBSD_LKP_CHECK_BODY_EXCEEDS_MEM;
|
|
goto bad_kernel;
|
|
}
|
|
}
|
|
|
|
/* Verify kernel body fits in the partition */
|
|
if (body_offset_sectors + body_sectors > part_size) {
|
|
VBDEBUG(("Kernel body doesn't fit in partition.\n"));
|
|
shpart->check_result = VBSD_LKP_CHECK_BODY_EXCEEDS_PART;
|
|
goto bad_kernel;
|
|
}
|
|
|
|
/* Read the kernel data */
|
|
VBPERFSTART("VB_RKD");
|
|
if (0 != VbExDiskRead(params->disk_handle,
|
|
part_start + body_offset_sectors,
|
|
body_sectors, params->kernel_buffer)) {
|
|
VBDEBUG(("Unable to read kernel data.\n"));
|
|
VBPERFEND("VB_RKD");
|
|
shpart->check_result = VBSD_LKP_CHECK_READ_DATA;
|
|
goto bad_kernel;
|
|
}
|
|
VBPERFEND("VB_RKD");
|
|
|
|
/* Verify kernel data */
|
|
if (0 != VerifyData((const uint8_t*)params->kernel_buffer,
|
|
params->kernel_buffer_size,
|
|
&preamble->body_signature, data_key)) {
|
|
VBDEBUG(("Kernel data verification failed.\n"));
|
|
shpart->check_result = VBSD_LKP_CHECK_VERIFY_DATA;
|
|
goto bad_kernel;
|
|
}
|
|
|
|
/* Done with the kernel signing key, so can free it now */
|
|
RSAPublicKeyFree(data_key);
|
|
data_key = NULL;
|
|
|
|
/* If we're still here, the kernel is valid. */
|
|
/* Save the first good partition we find; that's the one we'll boot */
|
|
VBDEBUG(("Partition is good.\n"));
|
|
shpart->check_result = VBSD_LKP_CHECK_KERNEL_GOOD;
|
|
if (key_block_valid)
|
|
shpart->flags |= VBSD_LKP_FLAG_KEY_BLOCK_VALID;
|
|
|
|
good_partition_key_block_valid = key_block_valid;
|
|
/* TODO: GPT partitions start at 1, but cgptlib starts them at 0.
|
|
* Adjust here, until cgptlib is fixed. */
|
|
good_partition = gpt.current_kernel + 1;
|
|
params->partition_number = gpt.current_kernel + 1;
|
|
GetCurrentKernelUniqueGuid(&gpt, ¶ms->partition_guid);
|
|
/* TODO: GetCurrentKernelUniqueGuid() should take a destination size, or
|
|
* the dest should be a struct, so we know it's big enough. */
|
|
params->bootloader_address = preamble->bootloader_address;
|
|
params->bootloader_size = preamble->bootloader_size;
|
|
|
|
/* Update GPT to note this is the kernel we're trying */
|
|
GptUpdateKernelEntry(&gpt, GPT_UPDATE_ENTRY_TRY);
|
|
|
|
/* If we're in recovery mode or we're about to boot a dev-signed kernel,
|
|
* there's no rollback protection, so we can stop at the first valid
|
|
* kernel. */
|
|
if (kBootRecovery == boot_mode || !key_block_valid) {
|
|
VBDEBUG(("In recovery mode or dev-signed kernel\n"));
|
|
break;
|
|
}
|
|
|
|
/* Otherwise, we do care about the key index in the TPM. If the good
|
|
* partition's key version is the same as the tpm, then the TPM doesn't
|
|
* need updating; we can stop now. Otherwise, we'll check all the other
|
|
* headers to see if they contain a newer key. */
|
|
if (combined_version == shared->kernel_version_tpm) {
|
|
VBDEBUG(("Same kernel version\n"));
|
|
break;
|
|
}
|
|
|
|
/* Continue, so that we skip the error handling code below */
|
|
continue;
|
|
|
|
bad_kernel:
|
|
/* Handle errors parsing this kernel */
|
|
if (NULL != data_key)
|
|
RSAPublicKeyFree(data_key);
|
|
|
|
VBDEBUG(("Marking kernel as invalid.\n"));
|
|
GptUpdateKernelEntry(&gpt, GPT_UPDATE_ENTRY_BAD);
|
|
|
|
|
|
} /* while(GptNextKernelEntry) */
|
|
} while(0);
|
|
|
|
/* Free kernel buffer */
|
|
if (kbuf)
|
|
VbExFree(kbuf);
|
|
|
|
/* Write and free GPT data */
|
|
WriteAndFreeGptData(params->disk_handle, &gpt);
|
|
|
|
/* Handle finding a good partition */
|
|
if (good_partition >= 0) {
|
|
VBDEBUG(("Good_partition >= 0\n"));
|
|
shcall->check_result = VBSD_LKC_CHECK_GOOD_PARTITION;
|
|
shared->kernel_version_lowest = lowest_version;
|
|
/* Sanity check - only store a new TPM version if we found one.
|
|
* If lowest_version is still at its initial value, we didn't find
|
|
* one; for example, we're in developer mode and just didn't look. */
|
|
if (lowest_version != LOWEST_TPM_VERSION &&
|
|
lowest_version > shared->kernel_version_tpm)
|
|
shared->kernel_version_tpm = lowest_version;
|
|
|
|
/* Success! */
|
|
retval = VBERROR_SUCCESS;
|
|
} else if (found_partitions > 0) {
|
|
shcall->check_result = VBSD_LKC_CHECK_INVALID_PARTITIONS;
|
|
recovery = VBNV_RECOVERY_RW_INVALID_OS;
|
|
retval = VBERROR_INVALID_KERNEL_FOUND;
|
|
} else {
|
|
shcall->check_result = VBSD_LKC_CHECK_NO_PARTITIONS;
|
|
recovery = VBNV_RECOVERY_RW_NO_OS;
|
|
retval = VBERROR_NO_KERNEL_FOUND;
|
|
}
|
|
|
|
LoadKernelExit:
|
|
|
|
/* Store recovery request, if any */
|
|
VbNvSet(vnc, VBNV_RECOVERY_REQUEST, VBERROR_SUCCESS != retval ?
|
|
recovery : VBNV_RECOVERY_NOT_REQUESTED);
|
|
|
|
/* If LoadKernel was called with bad parameters,
|
|
* shcall may not be initialized. */
|
|
if (shcall)
|
|
shcall->return_code = (uint8_t)retval;
|
|
|
|
/* Save whether the good partition's key block was fully verified */
|
|
if (good_partition_key_block_valid)
|
|
shared->flags |= VBSD_KERNEL_KEY_VERIFIED;
|
|
|
|
/* Store how much shared data we used, if any */
|
|
params->shared_data_size = shared->data_used;
|
|
|
|
return retval;
|
|
}
|