mirror of
https://github.com/Telecominfraproject/OpenCellular.git
synced 2026-01-06 23:51:28 +00:00
Using the lid angle, detect if we are in tablet mode or not.
We are in tablet mode when the lid angle is large enough:
tablet_mode:
1 | +-----<----+----------
| \/ /\
| | |
0 |------------------------>----+
+------------------+----------+----------+ lid angle
0 240 300 360
BRANCH=kevin
BUG=chrome-os-partner:55702,b:27849483
TEST=Check on Kevin event are sent on tablet mode transition.
Change-Id: Id9935ce4dd717e2c20fa6c9520defb504a1760d9
Signed-off-by: Gwendal Grignou <gwendal@chromium.org>
Reviewed-on: https://chromium-review.googlesource.com/383073
Reviewed-by: Aseda Aboagye <aaboagye@chromium.org>
333 lines
9.6 KiB
C
333 lines
9.6 KiB
C
/* Copyright (c) 2014 The Chromium OS Authors. All rights reserved.
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
/* Motion sense module to read from various motion sensors. */
|
|
|
|
#include "accelgyro.h"
|
|
#include "chipset.h"
|
|
#include "common.h"
|
|
#include "console.h"
|
|
#include "gesture.h"
|
|
#include "hooks.h"
|
|
#include "host_command.h"
|
|
#include "lid_angle.h"
|
|
#include "math_util.h"
|
|
#include "motion_lid.h"
|
|
#include "motion_sense.h"
|
|
#include "power.h"
|
|
#include "timer.h"
|
|
#include "task.h"
|
|
#include "util.h"
|
|
|
|
/* Console output macros */
|
|
#define CPUTS(outstr) cputs(CC_MOTION_LID, outstr)
|
|
#define CPRINTS(format, args...) cprints(CC_MOTION_LID, format, ## args)
|
|
#define CPRINTF(format, args...) cprintf(CC_MOTION_LID, format, ## args)
|
|
|
|
#ifdef CONFIG_LID_ANGLE_TABLET_MODE
|
|
|
|
#ifndef CONFIG_LID_ANGLE_INVALID_CHECK
|
|
#error "Check for invalid transition needed"
|
|
#endif
|
|
/*
|
|
* We are in tablet mode when the lid angle has been calculated
|
|
* to be large.
|
|
*
|
|
* By default, at boot, we are in tablet mode.
|
|
* Once a lid angle is calculated, we will get out of this fake state and enter
|
|
* tablet mode only if a high angle has been calculated.
|
|
*
|
|
* There might be false positives:
|
|
* - when the EC enters RO or RW mode.
|
|
* - when lid is closed while the hinge is perpendicalar to the floor, we will
|
|
* stay in tablet mode.
|
|
*
|
|
* Tablet mode is defined as the base being behind the lid. We use 2 threshold
|
|
* to calculate tablet mode:
|
|
* tablet_mode:
|
|
* 1 | +-----<----+----------
|
|
* | \/ /\
|
|
* | | |
|
|
* 0 |------------------------>----+
|
|
* +------------------+----------+----------+ lid angle
|
|
* 0 240 300 360
|
|
*/
|
|
#define TABLET_ZONE_LID_ANGLE FLOAT_TO_FP(300)
|
|
#define LAPTOP_ZONE_LID_ANGLE FLOAT_TO_FP(240)
|
|
|
|
static int tablet_mode = 1;
|
|
#endif
|
|
|
|
#ifdef CONFIG_LID_ANGLE_INVALID_CHECK
|
|
/* Previous lid_angle. */
|
|
static fp_t last_lid_angle_fp = FLOAT_TO_FP(-1);
|
|
#endif
|
|
|
|
/* Current acceleration vectors and current lid angle. */
|
|
static int lid_angle_deg;
|
|
|
|
static int lid_angle_is_reliable;
|
|
|
|
/*
|
|
* Angle threshold for how close the hinge aligns with gravity before
|
|
* considering the lid angle calculation unreliable. For computational
|
|
* efficiency, value is given unit-less, so if you want the threshold to be
|
|
* at 15 degrees, the value would be cos(15 deg) = 0.96593.
|
|
*/
|
|
#define HINGE_ALIGNED_WITH_GRAVITY_THRESHOLD FLOAT_TO_FP(0.96593)
|
|
|
|
/*
|
|
* Constant to debounce lid angle changes around 360 - 0:
|
|
* If we have a rotation through the angle 0, ignore.
|
|
*/
|
|
#define DEBOUNCE_ANGLE_DELTA FLOAT_TO_FP(20)
|
|
|
|
/*
|
|
* Define the accelerometer orientation matrices based on the standard
|
|
* reference frame in use (note: accel data is converted to standard ref
|
|
* frame before calculating lid angle).
|
|
*/
|
|
#ifdef CONFIG_ACCEL_STD_REF_FRAME_OLD
|
|
const struct accel_orientation acc_orient = {
|
|
/* Hinge aligns with y axis. */
|
|
.rot_hinge_90 = {
|
|
{ 0, 0, FLOAT_TO_FP(1)},
|
|
{ 0, FLOAT_TO_FP(1), 0},
|
|
{ FLOAT_TO_FP(-1), 0, 0}
|
|
},
|
|
.rot_hinge_180 = {
|
|
{ FLOAT_TO_FP(-1), 0, 0},
|
|
{ 0, FLOAT_TO_FP(1), 0},
|
|
{ 0, 0, FLOAT_TO_FP(-1)}
|
|
},
|
|
.hinge_axis = {0, 1, 0},
|
|
};
|
|
#else
|
|
const struct accel_orientation acc_orient = {
|
|
/* Hinge aligns with x axis. */
|
|
.rot_hinge_90 = {
|
|
{ FLOAT_TO_FP(1), 0, 0},
|
|
{ 0, 0, FLOAT_TO_FP(1)},
|
|
{ 0, FLOAT_TO_FP(-1), 0}
|
|
},
|
|
.rot_hinge_180 = {
|
|
{ FLOAT_TO_FP(1), 0, 0},
|
|
{ 0, FLOAT_TO_FP(-1), 0},
|
|
{ 0, 0, FLOAT_TO_FP(-1)}
|
|
},
|
|
.hinge_axis = {1, 0, 0},
|
|
};
|
|
#endif
|
|
|
|
/* Pointer to constant acceleration orientation data. */
|
|
const struct accel_orientation * const p_acc_orient = &acc_orient;
|
|
|
|
const struct motion_sensor_t * const accel_base =
|
|
&motion_sensors[CONFIG_LID_ANGLE_SENSOR_BASE];
|
|
const struct motion_sensor_t * const accel_lid =
|
|
&motion_sensors[CONFIG_LID_ANGLE_SENSOR_LID];
|
|
|
|
/**
|
|
* Calculate the lid angle using two acceleration vectors, one recorded in
|
|
* the base and one in the lid.
|
|
*
|
|
* @param base Base accel vector
|
|
* @param lid Lid accel vector
|
|
* @param lid_angle Pointer to location to store lid angle result
|
|
*
|
|
* @return flag representing if resulting lid angle calculation is reliable.
|
|
*/
|
|
static int calculate_lid_angle(const vector_3_t base, const vector_3_t lid,
|
|
int *lid_angle)
|
|
{
|
|
vector_3_t v;
|
|
fp_t lid_to_base_fp, cos_lid_90, cos_lid_270;
|
|
fp_t lid_to_base, base_to_hinge;
|
|
fp_t denominator;
|
|
int reliable = 1;
|
|
#ifdef CONFIG_LID_ANGLE_TABLET_MODE
|
|
int new_tablet_mode = tablet_mode;
|
|
#endif
|
|
|
|
/*
|
|
* The angle between lid and base is:
|
|
* acos((cad(base, lid) - cad(base, hinge)^2) /(1 - cad(base, hinge)^2))
|
|
* where cad() is the cosine_of_angle_diff() function.
|
|
*
|
|
* Make sure to check for divide by 0.
|
|
*/
|
|
lid_to_base = cosine_of_angle_diff(base, lid);
|
|
base_to_hinge = cosine_of_angle_diff(base, p_acc_orient->hinge_axis);
|
|
|
|
/*
|
|
* If hinge aligns too closely with gravity, then result may be
|
|
* unreliable.
|
|
*/
|
|
if (fp_abs(base_to_hinge) > HINGE_ALIGNED_WITH_GRAVITY_THRESHOLD)
|
|
reliable = 0;
|
|
|
|
base_to_hinge = fp_sq(base_to_hinge);
|
|
|
|
/* Check divide by 0. */
|
|
denominator = FLOAT_TO_FP(1.0) - base_to_hinge;
|
|
if (fp_abs(denominator) < FLOAT_TO_FP(0.01)) {
|
|
*lid_angle = 0;
|
|
return 0;
|
|
}
|
|
|
|
lid_to_base_fp = arc_cos(fp_div(lid_to_base - base_to_hinge,
|
|
denominator));
|
|
|
|
/*
|
|
* The previous calculation actually has two solutions, a positive and
|
|
* a negative solution. To figure out the sign of the answer, calculate
|
|
* the cosine of the angle between the actual lid angle and the
|
|
* estimated vector if the lid were open to 90 deg, cos_lid_90. Also
|
|
* calculate the cosine of the angle between the actual lid angle and
|
|
* the estimated vector if the lid were open to 270 deg,
|
|
* cos_lid_270. The smaller of the two angles represents which one is
|
|
* closer. If the lid is closer to the estimated 270 degree vector then
|
|
* the result is negative, otherwise it is positive.
|
|
*/
|
|
rotate(base, p_acc_orient->rot_hinge_90, v);
|
|
cos_lid_90 = cosine_of_angle_diff(v, lid);
|
|
rotate(v, p_acc_orient->rot_hinge_180, v);
|
|
cos_lid_270 = cosine_of_angle_diff(v, lid);
|
|
|
|
/*
|
|
* Note that cos_lid_90 and cos_lid_270 are not in degrees, because
|
|
* the arc_cos() was never performed. But, since arc_cos() is
|
|
* monotonically decreasing, we can do this comparison without ever
|
|
* taking arc_cos(). But, since the function is monotonically
|
|
* decreasing, the logic of this comparison is reversed.
|
|
*/
|
|
if (cos_lid_270 > cos_lid_90)
|
|
lid_to_base_fp = -lid_to_base_fp;
|
|
|
|
/* Place lid angle between 0 and 360 degrees. */
|
|
if (lid_to_base_fp < 0)
|
|
lid_to_base_fp += FLOAT_TO_FP(360);
|
|
|
|
#ifdef CONFIG_LID_ANGLE_INVALID_CHECK
|
|
/* Check if we have a sudden rotation from 360 <-> 0 */
|
|
if (last_lid_angle_fp >= 0 &&
|
|
((FLOAT_TO_FP(360) - last_lid_angle_fp < DEBOUNCE_ANGLE_DELTA &&
|
|
lid_to_base_fp < DEBOUNCE_ANGLE_DELTA) ||
|
|
(FLOAT_TO_FP(360) - lid_to_base_fp < DEBOUNCE_ANGLE_DELTA &&
|
|
last_lid_angle_fp < DEBOUNCE_ANGLE_DELTA)))
|
|
CPRINTS("ignore transition: %d to %d",
|
|
FP_TO_INT(last_lid_angle_fp),
|
|
FP_TO_INT(lid_to_base_fp));
|
|
else
|
|
last_lid_angle_fp = lid_to_base_fp;
|
|
|
|
/*
|
|
* Round to nearest int by adding 0.5. Note, only works because lid
|
|
* angle is known to be positive.
|
|
*/
|
|
*lid_angle = FP_TO_INT(last_lid_angle_fp + FLOAT_TO_FP(0.5));
|
|
|
|
#ifdef CONFIG_LID_ANGLE_TABLET_MODE
|
|
if (last_lid_angle_fp > TABLET_ZONE_LID_ANGLE)
|
|
new_tablet_mode = 1;
|
|
else if (last_lid_angle_fp < LAPTOP_ZONE_LID_ANGLE)
|
|
new_tablet_mode = 0;
|
|
if (tablet_mode != new_tablet_mode) {
|
|
tablet_mode = new_tablet_mode;
|
|
hook_notify(HOOK_TABLET_MODE_CHANGE);
|
|
}
|
|
#endif /* CONFIG_LID_ANGLE_TABLET_MODE */
|
|
#else /* CONFIG_LID_ANGLE_INVALID_CHECK */
|
|
*lid_angle = FP_TO_INT(lid_to_base_fp + FLOAT_TO_FP(0.5));
|
|
#endif
|
|
return reliable;
|
|
}
|
|
|
|
int motion_lid_get_angle(void)
|
|
{
|
|
if (lid_angle_is_reliable)
|
|
return lid_angle_deg;
|
|
else
|
|
return LID_ANGLE_UNRELIABLE;
|
|
}
|
|
|
|
/*
|
|
* Calculate lid angle and massage the results
|
|
*/
|
|
void motion_lid_calc(void)
|
|
{
|
|
#ifndef CONFIG_ACCEL_STD_REF_FRAME_OLD
|
|
/*
|
|
* rotate lid vector by 180 deg to be in the right coordinate frame
|
|
* because calculate_lid_angle assumes when the lid is closed, that
|
|
* the lid and base accelerometer data matches
|
|
*/
|
|
vector_3_t lid = { accel_lid->xyz[X],
|
|
accel_lid->xyz[Y] * -1,
|
|
accel_lid->xyz[Z] * -1};
|
|
/* Calculate angle of lid accel. */
|
|
lid_angle_is_reliable = calculate_lid_angle(
|
|
accel_base->xyz, lid,
|
|
&lid_angle_deg);
|
|
#else
|
|
/* Calculate angle of lid accel. */
|
|
lid_angle_is_reliable = calculate_lid_angle(
|
|
accel_base->xyz, accel_lid->xyz,
|
|
&lid_angle_deg);
|
|
#endif
|
|
|
|
#ifdef CONFIG_LID_ANGLE_UPDATE
|
|
lid_angle_update(motion_lid_get_angle());
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_LID_ANGLE_TABLET_MODE
|
|
int motion_lid_in_tablet_mode(void)
|
|
{
|
|
return tablet_mode;
|
|
}
|
|
#endif
|
|
|
|
/*****************************************************************************/
|
|
/* Host commands */
|
|
|
|
|
|
int host_cmd_motion_lid(struct host_cmd_handler_args *args)
|
|
{
|
|
const struct ec_params_motion_sense *in = args->params;
|
|
struct ec_response_motion_sense *out = args->response;
|
|
|
|
switch (in->cmd) {
|
|
case MOTIONSENSE_CMD_KB_WAKE_ANGLE:
|
|
#ifdef CONFIG_LID_ANGLE_UPDATE
|
|
/* Set new keyboard wake lid angle if data arg has value. */
|
|
if (in->kb_wake_angle.data != EC_MOTION_SENSE_NO_VALUE)
|
|
lid_angle_set_wake_angle(in->kb_wake_angle.data);
|
|
|
|
out->kb_wake_angle.ret = lid_angle_get_wake_angle();
|
|
#else
|
|
out->kb_wake_angle.ret = 0;
|
|
#endif
|
|
args->response_size = sizeof(out->kb_wake_angle);
|
|
|
|
break;
|
|
|
|
case MOTIONSENSE_CMD_LID_ANGLE:
|
|
#ifdef CONFIG_LID_ANGLE
|
|
out->lid_angle.value = motion_lid_get_angle();
|
|
args->response_size = sizeof(out->lid_angle);
|
|
#else
|
|
return EC_RES_INVALID_PARAM;
|
|
#endif
|
|
break;
|
|
|
|
default:
|
|
return EC_RES_INVALID_PARAM;
|
|
}
|
|
|
|
return EC_RES_SUCCESS;
|
|
}
|
|
|